炎症体
败血症
脂多糖
炎症
信号转导
药理学
穿孔
免疫学
化学
医学
生物
细胞生物学
冶金
材料科学
冲孔
作者
Xiao Zhang,Ning Wei,Ge Gao,Yong Zhou,Xiang-bing Duan,Xin Li,Dai Li,Ren Guo
标识
DOI:10.1016/j.ejphar.2023.175681
摘要
Acute inflammatory injury is the primary cause of sepsis, leading to various organ failures. Bazedoxifene (BAZ) has been proven to have anti-inflammatory effects. However, its effects on sepsis-induced intestinal injury are unclear. Here, we demonstrated the beneficial effects of BAZ on intestinal injury and explored the underlying mechanisms using cecal ligation and perforation (CLP)-mediated sepsis mouse model and in vitro cultured intestinal epithelial MODE-K cells. We found that BAZ elevated the survival rate of septic mice and attenuated CLP-triggered intestinal damage. BAZ inhibited intestinal inflammation and restored the impaired intestinal barriers in CLP mice. The mechanistic study in lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-stimulated MODE-K cells showed that BAZ significantly downregulated the expression of NOD-like receptor protein 3 (NLRP3), interleukin-1β (IL-1β), caspase-1, and gasdermin D (GSDMD), and markedly reduced the phosphorylation of molecules in the nuclear factor kappa B (NF-κB) pathway. Moreover, BAZ prominently rescued the decreased viability of MODE-K cells and reduced lactate dehydrogenase (LDH) release upon LPS/ATP challenge. However, BAZ did not affect the inflammasome assembly, as evidenced by the lack of changes in ASC (apoptosis speck-like protein containing a CARD) speck formation. Our results suggest that BAZ relieves inflammation and intestinal barrier function disruption by suppressing the NF-κB/NLRP3 signaling pathways. Therefore, BAZ is a potential therapeutic candidate for treating intestinal injury in sepsis.
科研通智能强力驱动
Strongly Powered by AbleSci AI