Prediction of vancomycin trough concentration using machine learning in the intensive care unit

万古霉素 肌酐 重症监护室 医学 随机森林 治疗药物监测 观察研究 槽浓度 线性回归 低谷(经济学) 回归 药代动力学 机器学习 内科学 统计 计算机科学 数学 地质学 宏观经济学 古生物学 经济 细菌 金黄色葡萄球菌
作者
Yutaka Igarashi,Shuichiro Osawa,Mari Akaiwa,Yoshiki Sato,Takuma Saito,Hatsumi Nakanishi,Masanori Yamanaka,Kan Nishimura,Kei Ogawa,Yuto Isoe,Yoshihiko Miura,Nodoka Miyake,Hayato Ohwada,Shoji Yokobori
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-2710660/v1
摘要

Abstract Background: It is difficult to predict vancomycin trough concentrations in critically ill patients as their pharmacokinetics change with the progression of both organ failure and medical intervention. This study aims to develop a model to predict vancomycin trough concentration using machine learning (ML) and to compare its prediction accuracy with that of the population pharmacokinetic (PPK) model. Methods: A single-center retrospective observational study was conducted. Patients who had been admitted to the intensive care unit, received intravenous vancomycin, and had undergone therapeutic drug monitoring between 2013 and 2020,were included. Thereafter, ML models were developed with random forest, LightGBM, and ridge regression using 42 features. Mean absolute errors (MAE) were compared and important features were shown using LightGBM. Results: Among 335 patients, 225 were included as training data and 110 were used for test data. A significant difference was identified in the MAE by each ML model compared with PPK;4.13 ± 3.64 for random forest, 4.18 ± 3.37 for LightGBM, 4.29 ± 3.88 for ridge regression, and 6.17 ± 5.36 for PPK. The highest importance features were pH, lactate, and serum creatinine. Conclusion: This study concludes that ML may be able to more accurately predict vancomycin trough concentrations than the currently used PPK model in ICU patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
皮崇知发布了新的文献求助10
3秒前
4秒前
wmc1357完成签到,获得积分10
6秒前
kiltorh发布了新的文献求助10
6秒前
Owen应助cuberar采纳,获得10
7秒前
7秒前
不甜可以吗完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助乐荷采纳,获得10
8秒前
huangYinghua发布了新的文献求助10
10秒前
10秒前
假如有贾蓉完成签到,获得积分10
13秒前
TL完成签到,获得积分10
13秒前
13秒前
14秒前
大水发布了新的文献求助10
14秒前
吴吴发布了新的文献求助30
16秒前
huangYinghua完成签到,获得积分10
18秒前
frank发布了新的文献求助10
18秒前
21秒前
22秒前
22秒前
Bryan应助大水采纳,获得10
23秒前
Hello应助frank采纳,获得10
23秒前
24秒前
Brak发布了新的文献求助10
25秒前
深渊完成签到 ,获得积分10
26秒前
文静的芝完成签到 ,获得积分10
26秒前
搜集达人应助研友_8Y26PL采纳,获得10
29秒前
30秒前
米奇完成签到 ,获得积分10
31秒前
美好易烟发布了新的文献求助10
36秒前
36秒前
乐呵呵完成签到,获得积分10
36秒前
38秒前
Jiaxin关注了科研通微信公众号
38秒前
月林旭发布了新的文献求助10
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162837
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432