Joint optimization of parcel allocation and crowd routing for crowdsourced last-mile delivery

最后一英里(运输) 列生成 计算机科学 接头(建筑物) 最优化问题 车辆路径问题 运筹学 布线(电子设计自动化) 英里 比例(比率) 众包 时间范围 运输工程 数学优化 工程类 计算机网络 地理 算法 土木工程 数学 地图学 大地测量学 万维网
作者
Li Wang,Min Xu,Hu Qin
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:171: 111-135 被引量:16
标识
DOI:10.1016/j.trb.2023.03.007
摘要

Urban last-mile delivery providers are facing more and more challenges with the explosive development of e-commerce. The advancement of smart mobile and communication technology in recent years has stimulated the development of a new business model of city logistics, referred to as crowdsourced delivery or crowd-shipping. In this paper, we investigate a form of crowdsourced last-mile delivery that utilizes the journeys of commuters/travelers (crowd-couriers) to deliver parcels from intermediate stations to customers. We consider a logistics service provider that jointly optimizes parcel allocation to intermediate stations and the delivery routing of the crowd-couriers. The joint optimization model gives rise to a new variant of the last-mile delivery problem. We propose a data-driven column generation algorithm to solve the problem based on a set-partitioning formulation. Additionally, a rolling-horizon approach is proposed to address large-scale instances. Extensive numerical experiments are conducted to verify the efficiency of our model and solution approach, as well as the significance of the joint optimization of parcel allocation and the delivery route of the crowdsourced last-mile delivery. The results show that our data-driven column generation algorithm can obtain (near-)optimal solutions for up to 200 parcels in significantly less time than the exact algorithm. For larger instances, the combination of the data-driven column generation algorithm and the rolling-horizon approach can obtain good-quality solutions for up to 1000 parcels in 15 min. Moreover, compared with crowd-courier route optimization only, the joint optimization of parcel allocation and crowd-routing reduces the total cost by 32%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
nancy发布了新的文献求助20
2秒前
大个应助发发采纳,获得10
3秒前
3秒前
南三完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
xuqiansd完成签到,获得积分10
4秒前
jummy完成签到 ,获得积分10
4秒前
6秒前
领导范儿应助典雅雨寒采纳,获得10
6秒前
lllmmmzzz完成签到,获得积分20
7秒前
8秒前
华仔应助微微采纳,获得10
8秒前
8秒前
听雪发布了新的文献求助10
8秒前
9秒前
英姑应助鲨鱼辣椒采纳,获得10
9秒前
10秒前
蓝桉发布了新的文献求助10
10秒前
10秒前
顺顺安完成签到,获得积分10
11秒前
田様应助方源采纳,获得10
12秒前
12秒前
星辰大海应助科研通管家采纳,获得10
13秒前
li发布了新的文献求助10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
Yifan2024应助科研通管家采纳,获得20
13秒前
ceeray23应助科研通管家采纳,获得10
13秒前
vivi应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
针尖上的王子完成签到,获得积分10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462940
求助须知:如何正确求助?哪些是违规求助? 3056420
关于积分的说明 9052116
捐赠科研通 2746218
什么是DOI,文献DOI怎么找? 1506827
科研通“疑难数据库(出版商)”最低求助积分说明 696225
邀请新用户注册赠送积分活动 695767