木质素
纤维素
生物炼制
纳米纤维
分馏
化学工程
材料科学
生物量(生态学)
木质纤维素生物量
纳米材料
化学
原材料
有机化学
复合材料
纳米技术
工程类
海洋学
地质学
作者
Meysam Madadi,Mahdy Elsayed,Guojie Song,Rajeev Kumar,Mohamed Mahmoud-Aly,Bikram Basak,Byong‐Hun Jeon,Fubao Sun
标识
DOI:10.1016/j.cej.2023.142881
摘要
The effective fractionation of lignocellulose and the enhancement of its components require formidable efforts. This study explored synergistic biorefinery routes for the holistic conversion of lignocellulose biomass to green nanomaterials through one-pot fractionation using recyclable p-toluenesulfonic acid (p-TsOH)/pentanol reagents. The potential of p-TsOH/pentanol pretreatment of aspen biomass under various temperatures (80–180 °C) for co-production of cellulose nanofibers (CNFs) and lignin nanospheres (LNSs) was investigated. The optimal pretreatment temperature, which minimizes cellulosic degradation and promotes the holistic conversion of biomass, was 120 °C. In addition to its highly digestible nature, the cellulose-rich residue produced high-quality CNFs with a diameter <100 nm, good crystallization, and thermostability, making it suitable for various applications. Lignin characterization, molecular dynamics simulation, and density functional theory analyses of the recovered lignin revealed well-protected β-O-4 bonds (47.3/100 Ar), uniform molecular weights (Mw, 2815 g/mol; Mn, 1704 g/mol; PDI, 1.65), < 1% sugar content, fewer condensed structures, and nanosize shapes (100–300 nm) due to the molecular interactions of p-TsOH and pentanol with lignin units. Moreover, 0.4% LNSs additions reduced the chitosan film thickness by 53% and enhanced its tensile strain and strength by 33 and 59%, respectively, as compared to the pure chitosan film. This study provides a sustainable platform for the co-production of biobased CNFs and LNSs using cutting-edge fractionation of LCB, which is a breakthrough toward industrial biorefineries.
科研通智能强力驱动
Strongly Powered by AbleSci AI