Outcome prediction models incorporating clinical variables for Head and Neck Squamous cell Carcinoma: A systematic review of methodological conduct and risk of bias

系统回顾 检查表 预测建模 人口 医学 荟萃分析 数据提取 过度拟合 头颈部鳞状细胞癌 批判性评价 梅德林 肿瘤科 计算机科学 内科学 头颈部癌 机器学习 癌症 病理 心理学 替代医学 环境卫生 政治学 人工神经网络 法学 认知心理学
作者
Farhannah Aly,C.R. Hansen,Daniel Al Mouiee,Puma Sundaresan,Ali Haidar,Shalini Vinod,Lois Holloway
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:183: 109629-109629 被引量:3
标识
DOI:10.1016/j.radonc.2023.109629
摘要

Multiple outcome prediction models have been developed for Head and Neck Squamous Cell Carcinoma (HNSCC). This systematic review aimed to identify HNSCC outcome prediction model studies, assess their methodological quality and identify those with potential utility for clinical practice. Inclusion criteria were mucosal HNSCC prognostic prediction model studies (development or validation) incorporating clinically available variables accessible at time of treatment decision making and predicting tumour-related outcomes. Eligible publications were identified from PubMed and Embase. Methodological quality and risk of bias were assessed using the checklist for critical appraisal and data extraction for systematic reviews of prediction modelling studies (CHARMS) and prediction model risk of bias assessment tool (PROBAST). Eligible publications were categorised by study type for reporting. 64 eligible publications were identified; 55 reported model development, 37 external validations, with 28 reporting both. CHARMS checklist items relating to participants, predictors, outcomes, handling of missing data, and some model development and evaluation procedures were generally well-reported. Less well-reported were measures accounting for model overfitting and model performance measures, especially model calibration. Full model information was poorly reported (3/55 model developments), specifically model intercept, baseline survival or full model code. Most publications (54/55 model developments, 28/37 external validations) were found to have high risk of bias, predominantly due to methodological issues in the PROBAST analysis domain. The identified methodological issues may affect prediction model accuracy in heterogeneous populations. Independent external validation studies in the local population and demonstration of clinical impact are essential for the clinical implementation of outcome prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王海涛完成签到,获得积分10
刚刚
丹丹发布了新的文献求助10
1秒前
猫罐头完成签到,获得积分10
2秒前
wyxdd完成签到,获得积分10
3秒前
天天快乐应助球闪采纳,获得10
3秒前
烟花应助LLB采纳,获得10
4秒前
5秒前
雷欣儿发布了新的文献求助10
6秒前
Return应助三金采纳,获得10
7秒前
优秀凌青完成签到,获得积分10
7秒前
脑洞疼应助风评采纳,获得10
8秒前
深情安青应助徐丹采纳,获得10
9秒前
9秒前
9秒前
含灵巨贼发布了新的文献求助10
10秒前
17808352679完成签到,获得积分10
10秒前
谨慎的云朵完成签到,获得积分10
13秒前
叶立军发布了新的文献求助30
13秒前
七七发布了新的文献求助10
14秒前
雷欣儿完成签到,获得积分10
14秒前
严昌发布了新的文献求助10
16秒前
17秒前
shuan发布了新的文献求助30
17秒前
凩飒完成签到,获得积分0
17秒前
20秒前
yy发布了新的文献求助10
21秒前
卡皮巴拉发布了新的文献求助10
22秒前
茴香豆完成签到 ,获得积分10
22秒前
23秒前
23秒前
研友_VZG7GZ应助调皮的志泽采纳,获得10
24秒前
安陌煜发布了新的文献求助30
24秒前
徐丹发布了新的文献求助10
25秒前
diegomht发布了新的文献求助10
27秒前
Sulin完成签到 ,获得积分10
27秒前
彭于晏应助严昌采纳,获得10
27秒前
宏韬发布了新的文献求助10
28秒前
28秒前
科目三应助liujing_242022采纳,获得10
29秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644