Outcome prediction models incorporating clinical variables for Head and Neck Squamous cell Carcinoma: A systematic review of methodological conduct and risk of bias

系统回顾 检查表 预测建模 人口 医学 荟萃分析 数据提取 过度拟合 头颈部鳞状细胞癌 批判性评价 梅德林 肿瘤科 计算机科学 内科学 头颈部癌 机器学习 癌症 病理 心理学 替代医学 法学 认知心理学 环境卫生 人工神经网络 政治学
作者
Farhannah Aly,C.R. Hansen,Daniel Al Mouiee,Puma Sundaresan,Ali Haidar,Shalini Vinod,Lois Holloway
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:183: 109629-109629 被引量:3
标识
DOI:10.1016/j.radonc.2023.109629
摘要

Multiple outcome prediction models have been developed for Head and Neck Squamous Cell Carcinoma (HNSCC). This systematic review aimed to identify HNSCC outcome prediction model studies, assess their methodological quality and identify those with potential utility for clinical practice. Inclusion criteria were mucosal HNSCC prognostic prediction model studies (development or validation) incorporating clinically available variables accessible at time of treatment decision making and predicting tumour-related outcomes. Eligible publications were identified from PubMed and Embase. Methodological quality and risk of bias were assessed using the checklist for critical appraisal and data extraction for systematic reviews of prediction modelling studies (CHARMS) and prediction model risk of bias assessment tool (PROBAST). Eligible publications were categorised by study type for reporting. 64 eligible publications were identified; 55 reported model development, 37 external validations, with 28 reporting both. CHARMS checklist items relating to participants, predictors, outcomes, handling of missing data, and some model development and evaluation procedures were generally well-reported. Less well-reported were measures accounting for model overfitting and model performance measures, especially model calibration. Full model information was poorly reported (3/55 model developments), specifically model intercept, baseline survival or full model code. Most publications (54/55 model developments, 28/37 external validations) were found to have high risk of bias, predominantly due to methodological issues in the PROBAST analysis domain. The identified methodological issues may affect prediction model accuracy in heterogeneous populations. Independent external validation studies in the local population and demonstration of clinical impact are essential for the clinical implementation of outcome prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适乐儿完成签到 ,获得积分10
1秒前
1秒前
隐形霸发布了新的文献求助10
1秒前
小作坊钳工完成签到,获得积分10
1秒前
shen应助zenoalter采纳,获得10
1秒前
1秒前
领导范儿应助zzzzzz采纳,获得20
2秒前
666完成签到,获得积分10
2秒前
kakainho完成签到,获得积分10
2秒前
追寻思雁发布了新的文献求助10
2秒前
Rage_Wang应助东方欲晓采纳,获得50
2秒前
登登完成签到,获得积分10
3秒前
领导范儿应助英俊凡波采纳,获得10
3秒前
chy发布了新的文献求助10
3秒前
SAY应助zengY采纳,获得10
3秒前
4秒前
美满的晓丝完成签到,获得积分10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
cdercder应助科研通管家采纳,获得10
4秒前
4秒前
Sun应助科研通管家采纳,获得10
5秒前
LZQ应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得20
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
刘壮实完成签到,获得积分10
5秒前
hans应助科研通管家采纳,获得10
5秒前
Cactus应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得20
5秒前
CC应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得20
5秒前
Cactus应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
Jasper应助J卡卡K采纳,获得10
6秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725887
求助须知:如何正确求助?哪些是违规求助? 3270945
关于积分的说明 9969702
捐赠科研通 2986404
什么是DOI,文献DOI怎么找? 1638200
邀请新用户注册赠送积分活动 778014
科研通“疑难数据库(出版商)”最低求助积分说明 747365