计算机科学
人工智能
集合(抽象数据类型)
特征(语言学)
模式识别(心理学)
校准
机器学习
领域(数学分析)
高光谱成像
约束(计算机辅助设计)
人工神经网络
上下文图像分类
图像(数学)
数学
数学分析
哲学
语言学
统计
几何学
程序设计语言
作者
Quanyong Liu,Jiangtao Peng,Yujie Ning,Na Chen,Weiwei Sun,Qian Du,Yicong Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:61: 1-14
被引量:33
标识
DOI:10.1109/tgrs.2023.3257341
摘要
Recently, prototypical network based few-shot learning (FSL) has been introduced for small-sample hyperspectral image (HSI) classification and shown good performance. However, existing prototypical-based FSL methods have two problems: prototype instability and domain shift between training and testing datasets. To solve these problems, we propose a refined prototypical contrastive learning network for few-shot learning (RPCL-FSL) in this paper, which incorporates supervised contrastive learning and FSL into an end-to-end network to perform small-sample HSI classification. To stabilize and refine the prototypes, RPCL-FSL imposes triple constraints on prototypes of the support set, i.e., contrastive learning (CL), self-calibration (SC) and cross-calibration (CC) based constraints. The CL module imposes internal constraint on the prototypes aiming to directly improve the prototypes using support set samples in the CL framework, and the SC and CC modules impose external constraints on the prototypes by using the prediction loss of support set samples and the query set prototypes, respectively. To alleviate domain shift in the FSL, a fusion training strategy is designed to reduce the feature differences between training and testing datasets. Experimental results on three HSI datasets demonstrate that the proposed RPCL-FSL outperforms existing state-of-the-art deep learning and FSL methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI