Improved and accurate fault diagnostic model for gas turbine based on 2D-wavelet transform and generative adversarial network

计算机科学 断层(地质) 卷积神经网络 人工智能 预处理器 小波 模式识别(心理学) 发电机(电路理论) 小波变换 数据挖掘 算法 功率(物理) 物理 量子力学 地震学 地质学
作者
Kun Yao,Ying Wang,Shuangshuang Fan,Junfeng Fu,Jie Wan,Yong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 075104-075104 被引量:3
标识
DOI:10.1088/1361-6501/acc5fe
摘要

Abstract Severe working environments cause gas turbines to break down, which can directly affect their performance. Research on the diagnostic methods for gas turbine faults, such as, gas path faults and sensor failures, has always raised concerns. However, traditional fault diagnosis algorithms mostly use instantaneous data rather than time-series data, because they cannot efficiently use time-series analysis to extract fault features and improve algorithm accuracy. Problems with sparse fault samples and categories are also encountered with these algorithms. In this study, a gas turbine fault diagnostic method based on a 2D-wavelet transform and generative adversarial network (GAN) was proposed. The data preprocessing method, 2D-wavelet transform, of multiple time series images was used to obtain fault features. Based on the Fréchet inception distance, a performance evaluation index, an optimal generator built from a deep convolutional GAN model was selected to solve sparse or imbalanced datasets. The classification accuracy of the four algorithms, namely, random forest, support vector machine, convolutional neural network, and deep neural network, verified the performance of the data preprocessing and dataset building methods mentioned earlier. Compared with the original data, the 2D wavelet transform effectively improved the model accuracy. The generated samples also improved the misclassification issue caused by the imbalanced dataset; however, the ratio of real and generated samples in datasets still requires more attention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张同学发布了新的文献求助10
2秒前
fanfan完成签到 ,获得积分10
2秒前
coco完成签到,获得积分10
3秒前
清脆大树完成签到,获得积分10
4秒前
5秒前
5秒前
Xinger发布了新的文献求助10
7秒前
asdfzxcv应助coco采纳,获得10
9秒前
asdfzxcv应助小张同学采纳,获得10
11秒前
房房不慌完成签到 ,获得积分10
13秒前
zym428完成签到,获得积分10
13秒前
迷人的爆米花完成签到 ,获得积分10
13秒前
14秒前
韩立完成签到 ,获得积分10
15秒前
lll发布了新的文献求助10
16秒前
16秒前
18秒前
18秒前
xun完成签到,获得积分10
18秒前
18秒前
李爱国应助跳跃的鱼采纳,获得10
19秒前
七彩发布了新的文献求助10
19秒前
hohokuz完成签到,获得积分10
19秒前
张顺完成签到,获得积分10
20秒前
动听雨梅完成签到 ,获得积分10
20秒前
20秒前
YANG_2025完成签到,获得积分10
21秒前
Ccc完成签到,获得积分10
21秒前
小飞机发布了新的文献求助10
22秒前
linxi发布了新的文献求助10
22秒前
wt发布了新的文献求助10
22秒前
23秒前
胡京龙完成签到,获得积分10
23秒前
24秒前
勤奋的擎苍完成签到 ,获得积分20
26秒前
无极微光应助sijiangju采纳,获得20
26秒前
linxi完成签到,获得积分10
27秒前
27秒前
27秒前
七彩完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642830
求助须知:如何正确求助?哪些是违规求助? 4759998
关于积分的说明 15019132
捐赠科研通 4801370
什么是DOI,文献DOI怎么找? 2566676
邀请新用户注册赠送积分活动 1524579
关于科研通互助平台的介绍 1484206