Improved and accurate fault diagnostic model for gas turbine based on 2D-wavelet transform and generative adversarial network

计算机科学 断层(地质) 卷积神经网络 人工智能 预处理器 小波 模式识别(心理学) 发电机(电路理论) 小波变换 数据挖掘 算法 功率(物理) 物理 量子力学 地震学 地质学
作者
Kun Yao,Ying Wang,Shuangshuang Fan,Junfeng Fu,Jie Wan,Yong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 075104-075104 被引量:3
标识
DOI:10.1088/1361-6501/acc5fe
摘要

Abstract Severe working environments cause gas turbines to break down, which can directly affect their performance. Research on the diagnostic methods for gas turbine faults, such as, gas path faults and sensor failures, has always raised concerns. However, traditional fault diagnosis algorithms mostly use instantaneous data rather than time-series data, because they cannot efficiently use time-series analysis to extract fault features and improve algorithm accuracy. Problems with sparse fault samples and categories are also encountered with these algorithms. In this study, a gas turbine fault diagnostic method based on a 2D-wavelet transform and generative adversarial network (GAN) was proposed. The data preprocessing method, 2D-wavelet transform, of multiple time series images was used to obtain fault features. Based on the Fréchet inception distance, a performance evaluation index, an optimal generator built from a deep convolutional GAN model was selected to solve sparse or imbalanced datasets. The classification accuracy of the four algorithms, namely, random forest, support vector machine, convolutional neural network, and deep neural network, verified the performance of the data preprocessing and dataset building methods mentioned earlier. Compared with the original data, the 2D wavelet transform effectively improved the model accuracy. The generated samples also improved the misclassification issue caused by the imbalanced dataset; however, the ratio of real and generated samples in datasets still requires more attention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingwill举报hhh求助涉嫌违规
刚刚
刚刚
刚刚
Elaine完成签到,获得积分10
1秒前
今后应助许鸽采纳,获得10
1秒前
1秒前
Ava应助池鱼思故渊采纳,获得10
2秒前
梁33完成签到,获得积分10
2秒前
乐乐应助池鱼思故渊采纳,获得10
2秒前
斯文败类应助33采纳,获得10
2秒前
fff发布了新的文献求助10
2秒前
Akim应助杨帅采纳,获得10
2秒前
ZeKaWa完成签到,获得积分0
2秒前
小橘子发布了新的文献求助10
3秒前
HEYATIAN完成签到 ,获得积分10
3秒前
豌豆苗完成签到 ,获得积分10
4秒前
帅气的小兔子完成签到,获得积分10
4秒前
4秒前
Double发布了新的文献求助10
5秒前
CGDAZE完成签到,获得积分10
5秒前
Raymond应助快乐小子采纳,获得10
5秒前
汉堡包应助ddddd采纳,获得10
5秒前
港怀发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
冷傲的慕梅完成签到,获得积分20
6秒前
南山无梅落完成签到 ,获得积分10
6秒前
大个应助2240920060采纳,获得10
6秒前
何1完成签到,获得积分10
6秒前
苗苗会喵喵完成签到,获得积分10
7秒前
高xy完成签到,获得积分10
7秒前
奋斗的铅笔完成签到,获得积分10
8秒前
123给123的求助进行了留言
8秒前
8秒前
8秒前
酷酷的友灵完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
hehe完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574157
求助须知:如何正确求助?哪些是违规求助? 4660338
关于积分的说明 14729696
捐赠科研通 4600255
什么是DOI,文献DOI怎么找? 2524742
邀请新用户注册赠送积分活动 1495053
关于科研通互助平台的介绍 1465034