Improved and accurate fault diagnostic model for gas turbine based on 2D-wavelet transform and generative adversarial network

计算机科学 断层(地质) 卷积神经网络 人工智能 预处理器 小波 模式识别(心理学) 发电机(电路理论) 小波变换 数据挖掘 算法 功率(物理) 物理 量子力学 地震学 地质学
作者
Kun Yao,Ying Wang,Shuangshuang Fan,Junfeng Fu,Jie Wan,Yong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 075104-075104 被引量:3
标识
DOI:10.1088/1361-6501/acc5fe
摘要

Abstract Severe working environments cause gas turbines to break down, which can directly affect their performance. Research on the diagnostic methods for gas turbine faults, such as, gas path faults and sensor failures, has always raised concerns. However, traditional fault diagnosis algorithms mostly use instantaneous data rather than time-series data, because they cannot efficiently use time-series analysis to extract fault features and improve algorithm accuracy. Problems with sparse fault samples and categories are also encountered with these algorithms. In this study, a gas turbine fault diagnostic method based on a 2D-wavelet transform and generative adversarial network (GAN) was proposed. The data preprocessing method, 2D-wavelet transform, of multiple time series images was used to obtain fault features. Based on the Fréchet inception distance, a performance evaluation index, an optimal generator built from a deep convolutional GAN model was selected to solve sparse or imbalanced datasets. The classification accuracy of the four algorithms, namely, random forest, support vector machine, convolutional neural network, and deep neural network, verified the performance of the data preprocessing and dataset building methods mentioned earlier. Compared with the original data, the 2D wavelet transform effectively improved the model accuracy. The generated samples also improved the misclassification issue caused by the imbalanced dataset; however, the ratio of real and generated samples in datasets still requires more attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助白若可依采纳,获得10
刚刚
自信璎发布了新的文献求助30
1秒前
YJ888发布了新的文献求助10
1秒前
2秒前
yyyhhh发布了新的文献求助10
2秒前
2秒前
善学以致用应助kelly采纳,获得10
2秒前
2秒前
而发的完成签到,获得积分10
3秒前
郑zz完成签到,获得积分10
3秒前
研友_VZG7GZ应助xaioniu采纳,获得20
4秒前
hlx年少完成签到,获得积分10
4秒前
wuzhi发布了新的文献求助10
4秒前
4秒前
田様应助Nothing采纳,获得10
5秒前
风清扬发布了新的文献求助30
5秒前
5秒前
曾经的孤萍完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
华仔应助ZJX采纳,获得10
7秒前
等风归丶发布了新的文献求助10
7秒前
skywalker关注了科研通微信公众号
7秒前
天天快乐应助YJ888采纳,获得10
7秒前
卫生五蚕体完成签到,获得积分10
8秒前
8秒前
8秒前
支怀曼完成签到,获得积分10
8秒前
隐形曼青应助木子啊啊采纳,获得10
8秒前
fff完成签到 ,获得积分10
9秒前
wz发布了新的文献求助10
9秒前
save发布了新的文献求助10
9秒前
kelly发布了新的文献求助10
12秒前
Eve完成签到 ,获得积分10
12秒前
ding应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
12秒前
迟暮发布了新的文献求助10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709