已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved and accurate fault diagnostic model for gas turbine based on 2D-wavelet transform and generative adversarial network

计算机科学 断层(地质) 卷积神经网络 人工智能 预处理器 小波 模式识别(心理学) 发电机(电路理论) 小波变换 数据挖掘 算法 功率(物理) 物理 量子力学 地震学 地质学
作者
Kun Yao,Ying Wang,Shuangshuang Fan,Junfeng Fu,Jie Wan,Yong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 075104-075104 被引量:3
标识
DOI:10.1088/1361-6501/acc5fe
摘要

Abstract Severe working environments cause gas turbines to break down, which can directly affect their performance. Research on the diagnostic methods for gas turbine faults, such as, gas path faults and sensor failures, has always raised concerns. However, traditional fault diagnosis algorithms mostly use instantaneous data rather than time-series data, because they cannot efficiently use time-series analysis to extract fault features and improve algorithm accuracy. Problems with sparse fault samples and categories are also encountered with these algorithms. In this study, a gas turbine fault diagnostic method based on a 2D-wavelet transform and generative adversarial network (GAN) was proposed. The data preprocessing method, 2D-wavelet transform, of multiple time series images was used to obtain fault features. Based on the Fréchet inception distance, a performance evaluation index, an optimal generator built from a deep convolutional GAN model was selected to solve sparse or imbalanced datasets. The classification accuracy of the four algorithms, namely, random forest, support vector machine, convolutional neural network, and deep neural network, verified the performance of the data preprocessing and dataset building methods mentioned earlier. Compared with the original data, the 2D wavelet transform effectively improved the model accuracy. The generated samples also improved the misclassification issue caused by the imbalanced dataset; however, the ratio of real and generated samples in datasets still requires more attention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古月完成签到 ,获得积分10
刚刚
3秒前
等意送汝完成签到 ,获得积分10
3秒前
张怡博发布了新的文献求助10
3秒前
Worenxian完成签到 ,获得积分10
3秒前
heroicsheng完成签到,获得积分10
6秒前
oleskarabach发布了新的文献求助10
9秒前
12秒前
xiuxiu完成签到 ,获得积分10
12秒前
ljj001ljj完成签到,获得积分10
17秒前
22秒前
24秒前
yx发布了新的文献求助10
28秒前
30秒前
30秒前
充电宝应助阿鲁巴采纳,获得10
31秒前
LLL完成签到,获得积分20
32秒前
w6c6y6发布了新的文献求助20
34秒前
xiaoxiao完成签到 ,获得积分10
34秒前
冬柳发布了新的文献求助10
35秒前
Orange应助无限铸海采纳,获得10
35秒前
科研通AI6应助罗鹏采纳,获得10
37秒前
enenenen89完成签到,获得积分10
40秒前
大模型应助w6c6y6采纳,获得20
41秒前
42秒前
42秒前
ljj001ljj发布了新的文献求助20
44秒前
无限铸海发布了新的文献求助10
48秒前
48秒前
诚心爆米花完成签到 ,获得积分10
51秒前
Ken完成签到,获得积分10
52秒前
流萤发布了新的文献求助10
53秒前
he完成签到,获得积分10
53秒前
笔面第一关注了科研通微信公众号
54秒前
科研通AI6应助Lida采纳,获得10
54秒前
55秒前
情怀应助huayi采纳,获得10
55秒前
流萤完成签到,获得积分10
1分钟前
1分钟前
天天快乐应助Hairee采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522409
求助须知:如何正确求助?哪些是违规求助? 4613410
关于积分的说明 14538809
捐赠科研通 4551142
什么是DOI,文献DOI怎么找? 2494023
邀请新用户注册赠送积分活动 1475048
关于科研通互助平台的介绍 1446408