Improved and accurate fault diagnostic model for gas turbine based on 2D-wavelet transform and generative adversarial network

计算机科学 断层(地质) 卷积神经网络 人工智能 预处理器 小波 模式识别(心理学) 发电机(电路理论) 小波变换 数据挖掘 算法 功率(物理) 物理 量子力学 地震学 地质学
作者
Kun Yao,Ying Wang,Shuangshuang Fan,Junfeng Fu,Jie Wan,Yong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 075104-075104 被引量:3
标识
DOI:10.1088/1361-6501/acc5fe
摘要

Abstract Severe working environments cause gas turbines to break down, which can directly affect their performance. Research on the diagnostic methods for gas turbine faults, such as, gas path faults and sensor failures, has always raised concerns. However, traditional fault diagnosis algorithms mostly use instantaneous data rather than time-series data, because they cannot efficiently use time-series analysis to extract fault features and improve algorithm accuracy. Problems with sparse fault samples and categories are also encountered with these algorithms. In this study, a gas turbine fault diagnostic method based on a 2D-wavelet transform and generative adversarial network (GAN) was proposed. The data preprocessing method, 2D-wavelet transform, of multiple time series images was used to obtain fault features. Based on the Fréchet inception distance, a performance evaluation index, an optimal generator built from a deep convolutional GAN model was selected to solve sparse or imbalanced datasets. The classification accuracy of the four algorithms, namely, random forest, support vector machine, convolutional neural network, and deep neural network, verified the performance of the data preprocessing and dataset building methods mentioned earlier. Compared with the original data, the 2D wavelet transform effectively improved the model accuracy. The generated samples also improved the misclassification issue caused by the imbalanced dataset; however, the ratio of real and generated samples in datasets still requires more attention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助科研通管家采纳,获得10
刚刚
Zenia应助科研通管家采纳,获得10
刚刚
一一应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
一一应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
1秒前
buno应助科研通管家采纳,获得10
1秒前
Zenia应助科研通管家采纳,获得10
1秒前
复杂黑夜发布了新的文献求助10
1秒前
1秒前
一一应助科研通管家采纳,获得10
1秒前
Zenia应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
buno应助科研通管家采纳,获得10
1秒前
Zenia应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
2秒前
一一应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
狂野大有完成签到,获得积分10
2秒前
疯狂的雁卉完成签到,获得积分10
2秒前
干净的夜香完成签到,获得积分20
2秒前
edtaa发布了新的文献求助10
3秒前
坚定天蓝发布了新的文献求助10
3秒前
3秒前
3秒前
坚强若翠发布了新的文献求助10
3秒前
桐桐应助现代听枫采纳,获得10
6秒前
小葛发布了新的文献求助10
6秒前
山茶发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
远远发布了新的文献求助10
9秒前
10秒前
10秒前
Orange应助难过思菱采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013