Improved and accurate fault diagnostic model for gas turbine based on 2D-wavelet transform and generative adversarial network

计算机科学 断层(地质) 卷积神经网络 人工智能 预处理器 小波 模式识别(心理学) 发电机(电路理论) 小波变换 数据挖掘 算法 功率(物理) 物理 量子力学 地震学 地质学
作者
Kun Yao,Ying Wang,Shuangshuang Fan,Junfeng Fu,Jie Wan,Yong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 075104-075104 被引量:3
标识
DOI:10.1088/1361-6501/acc5fe
摘要

Abstract Severe working environments cause gas turbines to break down, which can directly affect their performance. Research on the diagnostic methods for gas turbine faults, such as, gas path faults and sensor failures, has always raised concerns. However, traditional fault diagnosis algorithms mostly use instantaneous data rather than time-series data, because they cannot efficiently use time-series analysis to extract fault features and improve algorithm accuracy. Problems with sparse fault samples and categories are also encountered with these algorithms. In this study, a gas turbine fault diagnostic method based on a 2D-wavelet transform and generative adversarial network (GAN) was proposed. The data preprocessing method, 2D-wavelet transform, of multiple time series images was used to obtain fault features. Based on the Fréchet inception distance, a performance evaluation index, an optimal generator built from a deep convolutional GAN model was selected to solve sparse or imbalanced datasets. The classification accuracy of the four algorithms, namely, random forest, support vector machine, convolutional neural network, and deep neural network, verified the performance of the data preprocessing and dataset building methods mentioned earlier. Compared with the original data, the 2D wavelet transform effectively improved the model accuracy. The generated samples also improved the misclassification issue caused by the imbalanced dataset; however, the ratio of real and generated samples in datasets still requires more attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
绵马紫萁发布了新的文献求助10
2秒前
3秒前
fzhou完成签到 ,获得积分10
3秒前
尘雾发布了新的文献求助10
3秒前
4秒前
一一发布了新的文献求助20
4秒前
4秒前
Aixia完成签到 ,获得积分10
5秒前
葡萄糖完成签到,获得积分10
5秒前
哈哈完成签到,获得积分10
5秒前
在水一方应助CC采纳,获得10
5秒前
5秒前
余笙完成签到 ,获得积分10
6秒前
神勇的雅香应助科研混子采纳,获得10
6秒前
TT发布了新的文献求助10
7秒前
李顺完成签到,获得积分20
8秒前
ayin发布了新的文献求助10
8秒前
wait发布了新的文献求助10
8秒前
我是站长才怪应助xg采纳,获得10
9秒前
童话艺术佳完成签到,获得积分10
9秒前
稀罕你完成签到,获得积分10
9秒前
junzilan发布了新的文献求助10
9秒前
anny.white完成签到,获得积分10
10秒前
科研通AI5应助平常的毛豆采纳,获得10
12秒前
SciGPT应助paul采纳,获得10
15秒前
17秒前
英姑应助书生采纳,获得10
18秒前
科研钓鱼佬完成签到,获得积分10
19秒前
21秒前
petrichor应助C_Cppp采纳,获得10
21秒前
nan完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
勤恳的雨文完成签到,获得积分10
22秒前
木森ab发布了新的文献求助10
23秒前
paul完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824