亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved and accurate fault diagnostic model for gas turbine based on 2D-wavelet transform and generative adversarial network

计算机科学 断层(地质) 卷积神经网络 人工智能 预处理器 小波 模式识别(心理学) 发电机(电路理论) 小波变换 数据挖掘 算法 功率(物理) 物理 量子力学 地震学 地质学
作者
Kun Yao,Ying Wang,Shuangshuang Fan,Junfeng Fu,Jie Wan,Yong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 075104-075104 被引量:3
标识
DOI:10.1088/1361-6501/acc5fe
摘要

Abstract Severe working environments cause gas turbines to break down, which can directly affect their performance. Research on the diagnostic methods for gas turbine faults, such as, gas path faults and sensor failures, has always raised concerns. However, traditional fault diagnosis algorithms mostly use instantaneous data rather than time-series data, because they cannot efficiently use time-series analysis to extract fault features and improve algorithm accuracy. Problems with sparse fault samples and categories are also encountered with these algorithms. In this study, a gas turbine fault diagnostic method based on a 2D-wavelet transform and generative adversarial network (GAN) was proposed. The data preprocessing method, 2D-wavelet transform, of multiple time series images was used to obtain fault features. Based on the Fréchet inception distance, a performance evaluation index, an optimal generator built from a deep convolutional GAN model was selected to solve sparse or imbalanced datasets. The classification accuracy of the four algorithms, namely, random forest, support vector machine, convolutional neural network, and deep neural network, verified the performance of the data preprocessing and dataset building methods mentioned earlier. Compared with the original data, the 2D wavelet transform effectively improved the model accuracy. The generated samples also improved the misclassification issue caused by the imbalanced dataset; however, the ratio of real and generated samples in datasets still requires more attention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助郭楠楠采纳,获得10
12秒前
12秒前
18秒前
45秒前
56秒前
郭楠楠发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得50
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
从容芮应助科研通管家采纳,获得100
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
希望天下0贩的0应助Huck采纳,获得10
1分钟前
1分钟前
1分钟前
binbinbin完成签到,获得积分20
1分钟前
Huck发布了新的文献求助10
1分钟前
小蘑菇应助买三个包子吧采纳,获得10
1分钟前
烟花应助林哈哈采纳,获得10
1分钟前
andrele发布了新的文献求助10
1分钟前
1分钟前
彭于晏应助舒服的觅夏采纳,获得10
2分钟前
Yini应助酷酷紫易采纳,获得100
2分钟前
2分钟前
2分钟前
四季刻歌发布了新的文献求助10
2分钟前
Huck完成签到,获得积分10
2分钟前
四季刻歌完成签到,获得积分10
2分钟前
安青兰完成签到 ,获得积分10
2分钟前
景清完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
无极微光应助科研通管家采纳,获得20
3分钟前
bc发布了新的文献求助10
3分钟前
那那发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664254
求助须知:如何正确求助?哪些是违规求助? 4859865
关于积分的说明 15107409
捐赠科研通 4822762
什么是DOI,文献DOI怎么找? 2581727
邀请新用户注册赠送积分活动 1535924
关于科研通互助平台的介绍 1494124