Improved and accurate fault diagnostic model for gas turbine based on 2D-wavelet transform and generative adversarial network

计算机科学 断层(地质) 卷积神经网络 人工智能 预处理器 小波 模式识别(心理学) 发电机(电路理论) 小波变换 数据挖掘 算法 功率(物理) 物理 量子力学 地震学 地质学
作者
Kun Yao,Ying Wang,Shuangshuang Fan,Junfeng Fu,Jie Wan,Yong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (7): 075104-075104 被引量:3
标识
DOI:10.1088/1361-6501/acc5fe
摘要

Abstract Severe working environments cause gas turbines to break down, which can directly affect their performance. Research on the diagnostic methods for gas turbine faults, such as, gas path faults and sensor failures, has always raised concerns. However, traditional fault diagnosis algorithms mostly use instantaneous data rather than time-series data, because they cannot efficiently use time-series analysis to extract fault features and improve algorithm accuracy. Problems with sparse fault samples and categories are also encountered with these algorithms. In this study, a gas turbine fault diagnostic method based on a 2D-wavelet transform and generative adversarial network (GAN) was proposed. The data preprocessing method, 2D-wavelet transform, of multiple time series images was used to obtain fault features. Based on the Fréchet inception distance, a performance evaluation index, an optimal generator built from a deep convolutional GAN model was selected to solve sparse or imbalanced datasets. The classification accuracy of the four algorithms, namely, random forest, support vector machine, convolutional neural network, and deep neural network, verified the performance of the data preprocessing and dataset building methods mentioned earlier. Compared with the original data, the 2D wavelet transform effectively improved the model accuracy. The generated samples also improved the misclassification issue caused by the imbalanced dataset; however, the ratio of real and generated samples in datasets still requires more attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨洋发布了新的文献求助10
刚刚
1秒前
1秒前
大模型应助知足常乐采纳,获得10
1秒前
wangs完成签到,获得积分10
1秒前
李爱国应助王某人采纳,获得10
1秒前
cy发布了新的文献求助10
1秒前
玛卡巴卡发布了新的文献求助10
1秒前
Q.L完成签到,获得积分20
2秒前
英勇翠曼发布了新的文献求助10
2秒前
xwx发布了新的文献求助10
2秒前
kp完成签到,获得积分10
3秒前
3秒前
Owen应助姜姜采纳,获得10
3秒前
3秒前
elsa622发布了新的文献求助30
3秒前
双shuang发布了新的文献求助10
4秒前
4秒前
miemie完成签到,获得积分10
4秒前
5秒前
5秒前
xiaoxin完成签到,获得积分10
5秒前
灯座发布了新的文献求助10
5秒前
5秒前
GGboooond发布了新的文献求助10
6秒前
hhq发布了新的文献求助10
6秒前
王某完成签到,获得积分10
7秒前
小杭76应助Liu采纳,获得10
7秒前
所所应助邪恶苹果大王采纳,获得10
7秒前
8秒前
8秒前
Nolan完成签到,获得积分10
9秒前
kk发布了新的文献求助10
9秒前
天天快乐应助hbhsjk采纳,获得10
9秒前
安某完成签到,获得积分10
9秒前
桐桐应助rudjs采纳,获得10
10秒前
善学以致用应助xwx采纳,获得10
10秒前
大气乐儿发布了新的文献求助10
10秒前
小马甲应助冬虫夏草采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182