GHMM: Learning Generative Hybrid Mixture Models for Generalized Point Set Registration in Computer-Assisted Orthopedic Surgery

混合模型 离群值 人工智能 计算机科学 稳健性(进化) 生成模型 模式识别(心理学) 计算机视觉 期望最大化算法 骨科手术 生成语法 数学 外科 最大似然 医学 统计 基因 生物化学 化学
作者
Zhengyan Zhang,Ang Zhang,Jiewen Lai,Hongliang Ren,Rui Song,Yibin Li,Max Q.‐H. Meng,Zhe Min
出处
期刊:IEEE transactions on medical robotics and bionics [Institute of Electrical and Electronics Engineers]
卷期号:6 (3): 1285-1295 被引量:1
标识
DOI:10.1109/tmrb.2024.3407362
摘要

In computer-assisted orthopedic surgery (CAOS), the overlay of pre-operative information onto the surgical scene is achieved through the registration of pre-operative 3D models with the intra-operative surface. The accuracy and robustness of this registration are crucial for effective interventional guidance. To enhance these qualities in CAOS, we explore the use of normal vectors and the concept of joint registration of two point sets, to simultaneously utilize more useful geometrical information and consider noise and outliers in both pre-operative and intra-operative spaces. We present a novel end-to-end hybrid learning-based registration method for CAOS by utilizing generalized point sets that consist of positional and normal vectors, which are considered to be generated from an unknown Generative Hybrid Mixture Model (GHMM) composed of Gaussian Mixture Models (GMMs) and Fisher Mixture Models (FMMs). The joint registration is cast as a maximum likelihood estimation (MLE) problem that aims to minimize the distances between the generalized points and the hybrid distributions. Our proposed approach, termed GHMM, has been extensively validated on various medical data sets (i.e., 291 human femur and 260 hip models) and the public dataset ModelNet40, outperforming state-of-the-art registration methods significantly (p-value<0.01). This suggests the potential of GHMM for applications in orthopedic surgical navigation and object localization. Furthermore, even under different noises and lower overlap ratio conditions, all evaluation metrics of GHMM are superior to other probabilistic methods, demonstrating GHMM's great capability to handle the partial-to-full registration problem and robustness to disturbances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自闭的研究生完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助顾宇采纳,获得10
4秒前
小马甲应助安详的韩庆采纳,获得10
4秒前
拉长的冷霜完成签到 ,获得积分10
4秒前
5秒前
6秒前
jar7989发布了新的文献求助10
6秒前
爆米花应助Synan采纳,获得10
7秒前
研友_8DAv0L发布了新的文献求助10
7秒前
Rainnnn完成签到,获得积分10
10秒前
10秒前
11秒前
杏仁露发布了新的文献求助10
11秒前
13秒前
13秒前
我是老大应助研友_8DAv0L采纳,获得10
14秒前
大个应助无敌葡萄爱学习采纳,获得10
14秒前
iNk应助yyyyyyyyyy采纳,获得20
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
海浪发布了新的文献求助10
17秒前
Ephemerality完成签到 ,获得积分10
19秒前
爆米花应助魏淑芬采纳,获得10
19秒前
虚幻的雪巧完成签到,获得积分10
20秒前
斯文败类应助调皮正豪采纳,获得50
21秒前
风中垣完成签到,获得积分10
22秒前
hh完成签到,获得积分10
23秒前
23秒前
24秒前
25秒前
大闲鱼铭一完成签到 ,获得积分10
26秒前
醋溜爆肚儿完成签到,获得积分10
27秒前
冷酷寒安完成签到 ,获得积分20
27秒前
hang发布了新的文献求助10
28秒前
Yynnn完成签到 ,获得积分10
30秒前
务实青筠完成签到 ,获得积分10
31秒前
水流众生完成签到 ,获得积分10
32秒前
32秒前
爱吃粑粑完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954416
求助须知:如何正确求助?哪些是违规求助? 3500394
关于积分的说明 11099388
捐赠科研通 3230962
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869852
科研通“疑难数据库(出版商)”最低求助积分说明 801689