GHMM: Learning Generative Hybrid Mixture Models for Generalized Point Set Registration in Computer-Assisted Orthopedic Surgery

混合模型 离群值 人工智能 计算机科学 稳健性(进化) 生成模型 模式识别(心理学) 计算机视觉 期望最大化算法 骨科手术 生成语法 数学 外科 最大似然 医学 统计 基因 生物化学 化学
作者
Zhengyan Zhang,Ang Zhang,Jiewen Lai,Hongliang Ren,Rui Song,Yibin Li,Max Q.‐H. Meng,Zhe Min
出处
期刊:IEEE transactions on medical robotics and bionics [Institute of Electrical and Electronics Engineers]
卷期号:6 (3): 1285-1295 被引量:1
标识
DOI:10.1109/tmrb.2024.3407362
摘要

In computer-assisted orthopedic surgery (CAOS), the overlay of pre-operative information onto the surgical scene is achieved through the registration of pre-operative 3D models with the intra-operative surface. The accuracy and robustness of this registration are crucial for effective interventional guidance. To enhance these qualities in CAOS, we explore the use of normal vectors and the concept of joint registration of two point sets, to simultaneously utilize more useful geometrical information and consider noise and outliers in both pre-operative and intra-operative spaces. We present a novel end-to-end hybrid learning-based registration method for CAOS by utilizing generalized point sets that consist of positional and normal vectors, which are considered to be generated from an unknown Generative Hybrid Mixture Model (GHMM) composed of Gaussian Mixture Models (GMMs) and Fisher Mixture Models (FMMs). The joint registration is cast as a maximum likelihood estimation (MLE) problem that aims to minimize the distances between the generalized points and the hybrid distributions. Our proposed approach, termed GHMM, has been extensively validated on various medical data sets (i.e., 291 human femur and 260 hip models) and the public dataset ModelNet40, outperforming state-of-the-art registration methods significantly (p-value<0.01). This suggests the potential of GHMM for applications in orthopedic surgical navigation and object localization. Furthermore, even under different noises and lower overlap ratio conditions, all evaluation metrics of GHMM are superior to other probabilistic methods, demonstrating GHMM's great capability to handle the partial-to-full registration problem and robustness to disturbances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Frank完成签到,获得积分10
刚刚
桐桐应助小喵采纳,获得10
刚刚
香蕉觅云应助执笔客采纳,获得10
刚刚
light完成签到 ,获得积分10
刚刚
你仔细听完成签到,获得积分10
1秒前
1秒前
Sailzyf完成签到,获得积分10
1秒前
抓恐龙发布了新的文献求助10
1秒前
1秒前
汉堡包应助言小采纳,获得10
2秒前
Chen发布了新的文献求助10
2秒前
lql233完成签到,获得积分20
2秒前
雪白问兰完成签到 ,获得积分10
2秒前
2秒前
魅力蜗牛完成签到,获得积分10
2秒前
2秒前
upup小李完成签到 ,获得积分10
3秒前
手帕很忙完成签到,获得积分10
3秒前
害羞含雁发布了新的文献求助10
3秒前
3秒前
zp完成签到 ,获得积分10
3秒前
ren发布了新的文献求助10
4秒前
Lucas应助踏实的小海豚采纳,获得10
4秒前
Lucas应助2go采纳,获得10
4秒前
Jasper应助日月山河永在采纳,获得10
5秒前
5秒前
6秒前
6秒前
慕青应助没有名称采纳,获得10
6秒前
HEIKU应助聪慧的机器猫采纳,获得10
6秒前
拼搏翠桃发布了新的文献求助10
7秒前
8个老登发布了新的文献求助10
8秒前
8秒前
hhy完成签到,获得积分10
8秒前
孙一雯发布了新的文献求助30
9秒前
9秒前
Xxxnnian完成签到,获得积分20
10秒前
fancy发布了新的文献求助10
10秒前
apple完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672