清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Sub-surface geospatial intelligence in carbon capture, utilization and storage: A machine learning approach for offshore storage site selection

选址 地理空间分析 海底管道 选择(遗传算法) 碳纤维 环境科学 计算机科学 工程类 人工智能 地质学 遥感 物理 岩土工程 算法 复合数 核物理学
作者
Mehdi Nassabeh,Zhenjiang You,Alireza Keshavarz,Stefan Iglauer
出处
期刊:Energy [Elsevier BV]
卷期号:305: 132086-132086 被引量:5
标识
DOI:10.1016/j.energy.2024.132086
摘要

This study introduces an innovative data-driven and machine-learning framework designed to accurately predict site scores in the site screening study for specific offshore CO2 storage sites. The framework seamlessly integrates diverse sub-surface geospatial data sources with human aided expert-weighted criteria, thereby providing a high-resolution screening tool. Tailored to accommodate varying data accessibility and the significance of criteria, this approach considers both technical and non-technical factors. Its purpose is to facilitate the identification of priority locations for projects associated with Carbon Capture, Utilization, and Storage (CCUS). Through aggregating and analyzing geospatial datasets, the study employs machine learning algorithms and an expert-weighted model to identify suitable geologic CCUS regions. This process adheres to stringent safety, risk control, and environmental guidelines, addressing situations where human analysis may fail to recognize patterns and provide detailed insights in suitable site screening techniques. The primary emphasis of this research is to bridge the gap between scientific inquiry and practical application, facilitating informed decision-making in the implementation of CCUS projects. Rigorous assessments encompassing geological, oceanographic, and eco-sensitivity metrics contribute valuable insights for policymakers and industry leaders. To ensure the accuracy, efficiency, and scalability of the established offshore CO2 storage facilities, the proposed machine learning approach undergoes benchmarking. This comprehensive evaluation includes the utilization of machine learning algorithms such as Extreme Gradient Boosting (XGBoost), Random Forest (RF), Multilayer Extreme Learning Machine (MLELM), and Deep Neural Network (DNN) for predicting more suitable site scores. Among these algorithms, the DNN algorithm emerges as the most effective in site score prediction. The strengths of the DNN algorithm encompass nonlinear modeling, feature learning, scale invariance, handling high-dimensional data, end-to-end learning, transfer learning, representation learning, and parallel processing. The evaluation results of the DNN algorithm demonstrate high accuracy in the testing subset, with values of AAPD (Average Absolute Percentage Difference) = 1.486%, WAAPD (Weighted Average Absolute Percentage Difference) = 0.0149%, VAF (Variance Accounted For) = 0.9937, RMSE (Root Mean Square Error) = 0.9279, RSR (Root Sum of Squares Residuals) = 0.0068, and R2 (Coefficient of Determination) = 0.9937.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RFlord发布了新的文献求助10
9秒前
zxcvvbb1001完成签到 ,获得积分10
33秒前
可爱沛蓝完成签到 ,获得积分10
42秒前
科目三应助科研通管家采纳,获得10
47秒前
52秒前
精明寒松完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
asultan发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
CSun完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Yoanna举报Jin_Xuli求助涉嫌违规
5分钟前
小二郎应助RFlord采纳,获得10
5分钟前
JiangYifan完成签到 ,获得积分10
6分钟前
6分钟前
RFlord发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
gmc完成签到 ,获得积分10
6分钟前
糟糕的翅膀完成签到,获得积分10
7分钟前
7分钟前
arniu2008完成签到,获得积分20
7分钟前
Yoanna给起点的求助进行了留言
8分钟前
woxinyouyou完成签到,获得积分0
8分钟前
8分钟前
8分钟前
李志全完成签到 ,获得积分10
8分钟前
9分钟前
Judy完成签到 ,获得积分0
9分钟前
bbsheng完成签到,获得积分10
10分钟前
kisslll完成签到 ,获得积分10
11分钟前
量子星尘发布了新的文献求助10
11分钟前
11分钟前
12分钟前
假花之谎完成签到,获得积分10
12分钟前
科研通AI5应助wucl1990采纳,获得10
12分钟前
研友_nxw2xL完成签到,获得积分10
12分钟前
muriel完成签到,获得积分0
12分钟前
如歌完成签到,获得积分10
12分钟前
12分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127916
求助须知:如何正确求助?哪些是违规求助? 4330811
关于积分的说明 13493730
捐赠科研通 4166547
什么是DOI,文献DOI怎么找? 2284058
邀请新用户注册赠送积分活动 1285045
关于科研通互助平台的介绍 1225368