Sub-surface geospatial intelligence in carbon capture, utilization and storage: A machine learning approach for offshore storage site selection

选址 地理空间分析 海底管道 选择(遗传算法) 碳纤维 环境科学 计算机科学 工程类 人工智能 地质学 遥感 物理 岩土工程 算法 复合数 核物理学
作者
Mehdi Nassabeh,Zhenjiang You,Alireza Keshavarz,Stefan Iglauer
出处
期刊:Energy [Elsevier]
卷期号:305: 132086-132086 被引量:5
标识
DOI:10.1016/j.energy.2024.132086
摘要

This study introduces an innovative data-driven and machine-learning framework designed to accurately predict site scores in the site screening study for specific offshore CO2 storage sites. The framework seamlessly integrates diverse sub-surface geospatial data sources with human aided expert-weighted criteria, thereby providing a high-resolution screening tool. Tailored to accommodate varying data accessibility and the significance of criteria, this approach considers both technical and non-technical factors. Its purpose is to facilitate the identification of priority locations for projects associated with Carbon Capture, Utilization, and Storage (CCUS). Through aggregating and analyzing geospatial datasets, the study employs machine learning algorithms and an expert-weighted model to identify suitable geologic CCUS regions. This process adheres to stringent safety, risk control, and environmental guidelines, addressing situations where human analysis may fail to recognize patterns and provide detailed insights in suitable site screening techniques. The primary emphasis of this research is to bridge the gap between scientific inquiry and practical application, facilitating informed decision-making in the implementation of CCUS projects. Rigorous assessments encompassing geological, oceanographic, and eco-sensitivity metrics contribute valuable insights for policymakers and industry leaders. To ensure the accuracy, efficiency, and scalability of the established offshore CO2 storage facilities, the proposed machine learning approach undergoes benchmarking. This comprehensive evaluation includes the utilization of machine learning algorithms such as Extreme Gradient Boosting (XGBoost), Random Forest (RF), Multilayer Extreme Learning Machine (MLELM), and Deep Neural Network (DNN) for predicting more suitable site scores. Among these algorithms, the DNN algorithm emerges as the most effective in site score prediction. The strengths of the DNN algorithm encompass nonlinear modeling, feature learning, scale invariance, handling high-dimensional data, end-to-end learning, transfer learning, representation learning, and parallel processing. The evaluation results of the DNN algorithm demonstrate high accuracy in the testing subset, with values of AAPD (Average Absolute Percentage Difference) = 1.486%, WAAPD (Weighted Average Absolute Percentage Difference) = 0.0149%, VAF (Variance Accounted For) = 0.9937, RMSE (Root Mean Square Error) = 0.9279, RSR (Root Sum of Squares Residuals) = 0.0068, and R2 (Coefficient of Determination) = 0.9937.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyra发布了新的文献求助10
2秒前
聪慧的从雪完成签到 ,获得积分10
8秒前
LiuZhaoYuan完成签到,获得积分10
22秒前
Binbin完成签到 ,获得积分10
23秒前
BINBIN完成签到 ,获得积分10
23秒前
lyra完成签到,获得积分10
24秒前
直率若烟完成签到 ,获得积分10
28秒前
科科通通完成签到,获得积分10
31秒前
33秒前
娅娃儿完成签到 ,获得积分10
39秒前
你才是小哭包完成签到 ,获得积分10
44秒前
rita_sun1969完成签到,获得积分10
49秒前
平淡尔琴完成签到,获得积分10
52秒前
朝阳完成签到,获得积分10
55秒前
MS903完成签到 ,获得积分10
56秒前
蓝华完成签到 ,获得积分10
56秒前
小巧的语儿完成签到 ,获得积分10
1分钟前
victory_liu完成签到,获得积分10
1分钟前
1分钟前
羞涩的傲菡完成签到,获得积分10
1分钟前
可爱的函函应助宏hong采纳,获得10
1分钟前
纸条条完成签到 ,获得积分10
1分钟前
单纯的小土豆完成签到 ,获得积分10
1分钟前
1分钟前
南星完成签到 ,获得积分10
1分钟前
LPPQBB应助科研小白采纳,获得100
1分钟前
宏hong发布了新的文献求助10
1分钟前
shacodow完成签到,获得积分10
1分钟前
欢呼的茗茗完成签到 ,获得积分10
1分钟前
哈基米德应助宏hong采纳,获得20
1分钟前
科研小白完成签到 ,获得积分10
1分钟前
浮游应助FWCY采纳,获得10
1分钟前
liukanhai完成签到,获得积分10
1分钟前
ll完成签到,获得积分10
1分钟前
瞿人雄完成签到,获得积分10
1分钟前
1002SHIB完成签到,获得积分10
1分钟前
没心没肺完成签到,获得积分10
1分钟前
nihaolaojiu完成签到,获得积分10
1分钟前
mafukairi应助Wang采纳,获得10
1分钟前
sheetung完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5281626
求助须知:如何正确求助?哪些是违规求助? 4435925
关于积分的说明 13806840
捐赠科研通 4316215
什么是DOI,文献DOI怎么找? 2369187
邀请新用户注册赠送积分活动 1364511
关于科研通互助平台的介绍 1327949