已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sub-surface geospatial intelligence in carbon capture, utilization and storage: A machine learning approach for offshore storage site selection

选址 地理空间分析 海底管道 选择(遗传算法) 碳纤维 环境科学 计算机科学 工程类 人工智能 地质学 遥感 物理 算法 复合数 核物理学 岩土工程
作者
Mehdi Nassabeh,Zhenjiang You,Alireza Keshavarz,Stefan Iglauer
出处
期刊:Energy [Elsevier]
卷期号:305: 132086-132086 被引量:5
标识
DOI:10.1016/j.energy.2024.132086
摘要

This study introduces an innovative data-driven and machine-learning framework designed to accurately predict site scores in the site screening study for specific offshore CO2 storage sites. The framework seamlessly integrates diverse sub-surface geospatial data sources with human aided expert-weighted criteria, thereby providing a high-resolution screening tool. Tailored to accommodate varying data accessibility and the significance of criteria, this approach considers both technical and non-technical factors. Its purpose is to facilitate the identification of priority locations for projects associated with Carbon Capture, Utilization, and Storage (CCUS). Through aggregating and analyzing geospatial datasets, the study employs machine learning algorithms and an expert-weighted model to identify suitable geologic CCUS regions. This process adheres to stringent safety, risk control, and environmental guidelines, addressing situations where human analysis may fail to recognize patterns and provide detailed insights in suitable site screening techniques. The primary emphasis of this research is to bridge the gap between scientific inquiry and practical application, facilitating informed decision-making in the implementation of CCUS projects. Rigorous assessments encompassing geological, oceanographic, and eco-sensitivity metrics contribute valuable insights for policymakers and industry leaders. To ensure the accuracy, efficiency, and scalability of the established offshore CO2 storage facilities, the proposed machine learning approach undergoes benchmarking. This comprehensive evaluation includes the utilization of machine learning algorithms such as Extreme Gradient Boosting (XGBoost), Random Forest (RF), Multilayer Extreme Learning Machine (MLELM), and Deep Neural Network (DNN) for predicting more suitable site scores. Among these algorithms, the DNN algorithm emerges as the most effective in site score prediction. The strengths of the DNN algorithm encompass nonlinear modeling, feature learning, scale invariance, handling high-dimensional data, end-to-end learning, transfer learning, representation learning, and parallel processing. The evaluation results of the DNN algorithm demonstrate high accuracy in the testing subset, with values of AAPD (Average Absolute Percentage Difference) = 1.486%, WAAPD (Weighted Average Absolute Percentage Difference) = 0.0149%, VAF (Variance Accounted For) = 0.9937, RMSE (Root Mean Square Error) = 0.9279, RSR (Root Sum of Squares Residuals) = 0.0068, and R2 (Coefficient of Determination) = 0.9937.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻青曼完成签到,获得积分20
1秒前
1秒前
2秒前
1816013153发布了新的文献求助10
3秒前
罗莹完成签到 ,获得积分10
3秒前
盲点完成签到,获得积分10
5秒前
6秒前
sy发布了新的文献求助10
7秒前
明亮擎完成签到,获得积分10
7秒前
斯文败类应助尔東采纳,获得10
7秒前
今夜有雨完成签到 ,获得积分10
7秒前
8秒前
mountainbike完成签到,获得积分10
8秒前
顾矜应助wvv采纳,获得10
8秒前
9秒前
9秒前
洁净芸遥发布了新的文献求助10
10秒前
小灰灰完成签到,获得积分10
13秒前
14秒前
bm发布了新的文献求助10
15秒前
ycy发布了新的文献求助10
15秒前
郝靖儿完成签到,获得积分10
17秒前
sopha发布了新的文献求助10
18秒前
19秒前
FashionBoy应助张利双采纳,获得10
19秒前
小布鲁布鲁完成签到 ,获得积分10
22秒前
原来完成签到 ,获得积分10
24秒前
24秒前
bm完成签到,获得积分10
24秒前
我是老大应助燕然都护采纳,获得10
27秒前
高挑的若雁完成签到 ,获得积分10
29秒前
30秒前
打打应助要减肥的书萱采纳,获得10
30秒前
8R60d8应助一十一采纳,获得10
30秒前
科研通AI6应助sopha采纳,获得10
30秒前
zzzzip完成签到,获得积分10
31秒前
科研通AI6应助一一采纳,获得10
32秒前
33秒前
33秒前
JamesPei应助薛建伟采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469659
求助须知:如何正确求助?哪些是违规求助? 4572675
关于积分的说明 14336729
捐赠科研通 4499533
什么是DOI,文献DOI怎么找? 2465123
邀请新用户注册赠送积分活动 1453678
关于科研通互助平台的介绍 1428175