亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sub-surface geospatial intelligence in carbon capture, utilization and storage: A machine learning approach for offshore storage site selection

选址 地理空间分析 海底管道 选择(遗传算法) 碳纤维 环境科学 计算机科学 工程类 人工智能 地质学 遥感 物理 岩土工程 算法 复合数 核物理学
作者
Mehdi Nassabeh,Zhenjiang You,Alireza Keshavarz,Stefan Iglauer
出处
期刊:Energy [Elsevier]
卷期号:305: 132086-132086 被引量:5
标识
DOI:10.1016/j.energy.2024.132086
摘要

This study introduces an innovative data-driven and machine-learning framework designed to accurately predict site scores in the site screening study for specific offshore CO2 storage sites. The framework seamlessly integrates diverse sub-surface geospatial data sources with human aided expert-weighted criteria, thereby providing a high-resolution screening tool. Tailored to accommodate varying data accessibility and the significance of criteria, this approach considers both technical and non-technical factors. Its purpose is to facilitate the identification of priority locations for projects associated with Carbon Capture, Utilization, and Storage (CCUS). Through aggregating and analyzing geospatial datasets, the study employs machine learning algorithms and an expert-weighted model to identify suitable geologic CCUS regions. This process adheres to stringent safety, risk control, and environmental guidelines, addressing situations where human analysis may fail to recognize patterns and provide detailed insights in suitable site screening techniques. The primary emphasis of this research is to bridge the gap between scientific inquiry and practical application, facilitating informed decision-making in the implementation of CCUS projects. Rigorous assessments encompassing geological, oceanographic, and eco-sensitivity metrics contribute valuable insights for policymakers and industry leaders. To ensure the accuracy, efficiency, and scalability of the established offshore CO2 storage facilities, the proposed machine learning approach undergoes benchmarking. This comprehensive evaluation includes the utilization of machine learning algorithms such as Extreme Gradient Boosting (XGBoost), Random Forest (RF), Multilayer Extreme Learning Machine (MLELM), and Deep Neural Network (DNN) for predicting more suitable site scores. Among these algorithms, the DNN algorithm emerges as the most effective in site score prediction. The strengths of the DNN algorithm encompass nonlinear modeling, feature learning, scale invariance, handling high-dimensional data, end-to-end learning, transfer learning, representation learning, and parallel processing. The evaluation results of the DNN algorithm demonstrate high accuracy in the testing subset, with values of AAPD (Average Absolute Percentage Difference) = 1.486%, WAAPD (Weighted Average Absolute Percentage Difference) = 0.0149%, VAF (Variance Accounted For) = 0.9937, RMSE (Root Mean Square Error) = 0.9279, RSR (Root Sum of Squares Residuals) = 0.0068, and R2 (Coefficient of Determination) = 0.9937.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yportne发布了新的文献求助10
1秒前
沉静盼易完成签到,获得积分10
36秒前
彭于晏应助科研通管家采纳,获得10
1分钟前
科研通AI5应助老实松鼠采纳,获得10
2分钟前
2分钟前
老实松鼠发布了新的文献求助10
2分钟前
此话当真完成签到,获得积分10
2分钟前
2分钟前
3分钟前
CodeCraft应助柚子采纳,获得10
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
ok完成签到,获得积分10
3分钟前
ok发布了新的文献求助10
3分钟前
豆豆发布了新的文献求助10
4分钟前
4分钟前
4分钟前
愚人完成签到,获得积分10
4分钟前
柚子发布了新的文献求助10
4分钟前
豆豆完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Jerrder发布了新的文献求助10
4分钟前
研友_ZelDDn完成签到,获得积分20
5分钟前
5分钟前
leileilei发布了新的文献求助10
5分钟前
领导范儿应助科研通管家采纳,获得10
5分钟前
Orange应助科研通管家采纳,获得20
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
waterloooo完成签到,获得积分10
6分钟前
7分钟前
7分钟前
小1发布了新的文献求助10
7分钟前
香蕉觅云应助ukulele117采纳,获得20
7分钟前
丘比特应助科研通管家采纳,获得10
7分钟前
若雨凌风应助科研通管家采纳,获得10
7分钟前
8分钟前
8分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477466
求助须知:如何正确求助?哪些是违规求助? 3068936
关于积分的说明 9110149
捐赠科研通 2760378
什么是DOI,文献DOI怎么找? 1514880
邀请新用户注册赠送积分活动 700483
科研通“疑难数据库(出版商)”最低求助积分说明 699604