Sub-surface geospatial intelligence in carbon capture, utilization and storage: A machine learning approach for offshore storage site selection

选址 地理空间分析 海底管道 选择(遗传算法) 碳纤维 环境科学 计算机科学 工程类 人工智能 地质学 遥感 物理 算法 复合数 核物理学 岩土工程
作者
Mehdi Nassabeh,Zhenjiang You,Alireza Keshavarz,Stefan Iglauer
出处
期刊:Energy [Elsevier BV]
卷期号:305: 132086-132086 被引量:5
标识
DOI:10.1016/j.energy.2024.132086
摘要

This study introduces an innovative data-driven and machine-learning framework designed to accurately predict site scores in the site screening study for specific offshore CO2 storage sites. The framework seamlessly integrates diverse sub-surface geospatial data sources with human aided expert-weighted criteria, thereby providing a high-resolution screening tool. Tailored to accommodate varying data accessibility and the significance of criteria, this approach considers both technical and non-technical factors. Its purpose is to facilitate the identification of priority locations for projects associated with Carbon Capture, Utilization, and Storage (CCUS). Through aggregating and analyzing geospatial datasets, the study employs machine learning algorithms and an expert-weighted model to identify suitable geologic CCUS regions. This process adheres to stringent safety, risk control, and environmental guidelines, addressing situations where human analysis may fail to recognize patterns and provide detailed insights in suitable site screening techniques. The primary emphasis of this research is to bridge the gap between scientific inquiry and practical application, facilitating informed decision-making in the implementation of CCUS projects. Rigorous assessments encompassing geological, oceanographic, and eco-sensitivity metrics contribute valuable insights for policymakers and industry leaders. To ensure the accuracy, efficiency, and scalability of the established offshore CO2 storage facilities, the proposed machine learning approach undergoes benchmarking. This comprehensive evaluation includes the utilization of machine learning algorithms such as Extreme Gradient Boosting (XGBoost), Random Forest (RF), Multilayer Extreme Learning Machine (MLELM), and Deep Neural Network (DNN) for predicting more suitable site scores. Among these algorithms, the DNN algorithm emerges as the most effective in site score prediction. The strengths of the DNN algorithm encompass nonlinear modeling, feature learning, scale invariance, handling high-dimensional data, end-to-end learning, transfer learning, representation learning, and parallel processing. The evaluation results of the DNN algorithm demonstrate high accuracy in the testing subset, with values of AAPD (Average Absolute Percentage Difference) = 1.486%, WAAPD (Weighted Average Absolute Percentage Difference) = 0.0149%, VAF (Variance Accounted For) = 0.9937, RMSE (Root Mean Square Error) = 0.9279, RSR (Root Sum of Squares Residuals) = 0.0068, and R2 (Coefficient of Determination) = 0.9937.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jamie完成签到,获得积分10
刚刚
刚刚
情怀应助摩西西采纳,获得10
1秒前
1秒前
自觉山柏发布了新的文献求助100
2秒前
烟花应助三胖采纳,获得10
2秒前
JANE完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
名金学南发布了新的文献求助10
4秒前
tp040900发布了新的文献求助10
5秒前
大模型应助火星上友易采纳,获得10
5秒前
科研通AI2S应助耿春丽采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
bkagyin应助逗逗采纳,获得10
7秒前
JANE发布了新的文献求助10
7秒前
阳光BOY发布了新的文献求助10
8秒前
shi发布了新的文献求助10
8秒前
8秒前
刘飞飞发布了新的文献求助10
9秒前
Leo发布了新的文献求助10
10秒前
摩西西完成签到,获得积分20
10秒前
yf发布了新的文献求助10
11秒前
11秒前
JamesPei应助阳光采纳,获得10
11秒前
em关注了科研通微信公众号
11秒前
12秒前
12秒前
英姑应助g123采纳,获得10
12秒前
BEYOND啊发布了新的文献求助10
13秒前
三胖完成签到,获得积分10
13秒前
shi完成签到,获得积分10
15秒前
九思发布了新的文献求助10
15秒前
山色青完成签到,获得积分10
16秒前
三胖发布了新的文献求助10
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531197
关于积分的说明 11252739
捐赠科研通 3269830
什么是DOI,文献DOI怎么找? 1804815
邀请新用户注册赠送积分活动 881915
科研通“疑难数据库(出版商)”最低求助积分说明 809028