清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Sub-surface geospatial intelligence in carbon capture, utilization and storage: A machine learning approach for offshore storage site selection

选址 地理空间分析 海底管道 选择(遗传算法) 碳纤维 环境科学 计算机科学 工程类 人工智能 地质学 遥感 物理 岩土工程 算法 复合数 核物理学
作者
Mehdi Nassabeh,Zhenjiang You,Alireza Keshavarz,Stefan Iglauer
出处
期刊:Energy [Elsevier]
卷期号:305: 132086-132086 被引量:5
标识
DOI:10.1016/j.energy.2024.132086
摘要

This study introduces an innovative data-driven and machine-learning framework designed to accurately predict site scores in the site screening study for specific offshore CO2 storage sites. The framework seamlessly integrates diverse sub-surface geospatial data sources with human aided expert-weighted criteria, thereby providing a high-resolution screening tool. Tailored to accommodate varying data accessibility and the significance of criteria, this approach considers both technical and non-technical factors. Its purpose is to facilitate the identification of priority locations for projects associated with Carbon Capture, Utilization, and Storage (CCUS). Through aggregating and analyzing geospatial datasets, the study employs machine learning algorithms and an expert-weighted model to identify suitable geologic CCUS regions. This process adheres to stringent safety, risk control, and environmental guidelines, addressing situations where human analysis may fail to recognize patterns and provide detailed insights in suitable site screening techniques. The primary emphasis of this research is to bridge the gap between scientific inquiry and practical application, facilitating informed decision-making in the implementation of CCUS projects. Rigorous assessments encompassing geological, oceanographic, and eco-sensitivity metrics contribute valuable insights for policymakers and industry leaders. To ensure the accuracy, efficiency, and scalability of the established offshore CO2 storage facilities, the proposed machine learning approach undergoes benchmarking. This comprehensive evaluation includes the utilization of machine learning algorithms such as Extreme Gradient Boosting (XGBoost), Random Forest (RF), Multilayer Extreme Learning Machine (MLELM), and Deep Neural Network (DNN) for predicting more suitable site scores. Among these algorithms, the DNN algorithm emerges as the most effective in site score prediction. The strengths of the DNN algorithm encompass nonlinear modeling, feature learning, scale invariance, handling high-dimensional data, end-to-end learning, transfer learning, representation learning, and parallel processing. The evaluation results of the DNN algorithm demonstrate high accuracy in the testing subset, with values of AAPD (Average Absolute Percentage Difference) = 1.486%, WAAPD (Weighted Average Absolute Percentage Difference) = 0.0149%, VAF (Variance Accounted For) = 0.9937, RMSE (Root Mean Square Error) = 0.9279, RSR (Root Sum of Squares Residuals) = 0.0068, and R2 (Coefficient of Determination) = 0.9937.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
栾小鱼发布了新的文献求助10
5秒前
HJJ完成签到 ,获得积分10
5秒前
栾小鱼完成签到,获得积分10
12秒前
沉静香氛完成签到 ,获得积分10
20秒前
砚木完成签到 ,获得积分10
21秒前
张平一完成签到 ,获得积分10
23秒前
airtermis完成签到 ,获得积分10
29秒前
sougardenist完成签到 ,获得积分10
45秒前
47秒前
wrl2023发布了新的文献求助10
54秒前
duoduozs完成签到,获得积分10
58秒前
menghongmei完成签到 ,获得积分10
1分钟前
传奇3应助香蕉妙菱采纳,获得10
1分钟前
千帆破浪完成签到 ,获得积分10
1分钟前
1分钟前
香蕉妙菱发布了新的文献求助10
1分钟前
su完成签到 ,获得积分0
2分钟前
回首不再是少年完成签到,获得积分0
2分钟前
LeungYM完成签到 ,获得积分10
2分钟前
桥西小河完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
搜集达人应助香蕉妙菱采纳,获得10
2分钟前
制药人完成签到 ,获得积分10
2分钟前
龙弟弟完成签到 ,获得积分10
2分钟前
Xzx1995完成签到 ,获得积分10
2分钟前
魁梧的衫完成签到 ,获得积分10
2分钟前
俏皮元珊完成签到 ,获得积分10
2分钟前
Dr-Luo完成签到 ,获得积分10
2分钟前
2分钟前
平凡世界完成签到 ,获得积分10
2分钟前
香蕉妙菱发布了新的文献求助10
2分钟前
Ray完成签到 ,获得积分10
2分钟前
Mine完成签到,获得积分10
2分钟前
南宫士晋完成签到 ,获得积分10
2分钟前
蓝意完成签到,获得积分0
3分钟前
gxzsdf完成签到 ,获得积分10
3分钟前
穿山的百足公主完成签到 ,获得积分10
3分钟前
小莫完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357793
求助须知:如何正确求助?哪些是违规求助? 4489040
关于积分的说明 13972852
捐赠科研通 4390436
什么是DOI,文献DOI怎么找? 2412115
邀请新用户注册赠送积分活动 1404658
关于科研通互助平台的介绍 1379066