结晶度
氧气
化学
活性氧
环境化学
光化学
有机化学
生物化学
结晶学
作者
Jingyi Wang,Binbin Wu,Xiaoshan Zheng,Junye Ma,Wanchao Yu,Baoliang Chen,Chiheng Chu
标识
DOI:10.1021/acs.est.4c01843
摘要
Iron minerals are widespread in earth's surface water and soil. Recent studies have revealed that under sunlight irradiation, iron minerals are photoactive on producing reactive oxygen species (ROS), a group of key species in regulating elemental cycling, microbe inactivation, and pollutant degradation. In nature, iron minerals exhibit varying crystallinity under different hydrogeological conditions. While crystallinity is a known key parameter determining the overall activity of iron minerals, the impact of iron mineral crystallinity on photochemical ROS production remains unknown. Here, we assessed the photochemical ROS production from ferrihydrites with different degrees of crystallinity. All examined ferrihydrites demonstrated photoactivity under irradiation, resulting in the generation of hydrogen peroxide (H2O2) and hydroxyl radical (•OH). The photochemical ROS production from ferrihydrites increased with decreasing ferrihydrite crystallinity. The crystallinity-dependent photochemical •OH production was primarily attributed to conduction band reduction reactions, with the reduction of O2 by conduction band electrons being the rate-limiting key process. Conversely, the crystallinity of iron minerals had a negligible influence on photon-to-electron conversion efficiency or surface Fenton-like activity. The difference in ROS productions led to a discrepant degradation efficiency of organic pollutants on iron mineral surfaces. Our study provides valuable insights into the crystallinity-dependent ROS productions from iron minerals in natural systems, emphasizing the significance of iron mineral photochemistry in natural sites with abundant lower-crystallinity iron minerals such as wetland water and surface soils.
科研通智能强力驱动
Strongly Powered by AbleSci AI