Automated Prediction of Proximal Middle Cerebral Artery Occlusions in Noncontrast Brain Computed Tomography

医学 计算机断层摄影术 计算机断层血管造影 霍恩斯菲尔德秤 大脑中动脉 放射科 冲程(发动机) 人工智能 缺血 内科学 机械工程 工程类 计算机科学
作者
Pyeong Eun Kim,Hyojung Yang,Dongmin Kim,Leonard Sunwoo,Chi Kyung Kim,Beom Joon Kim,Joon‐Tae Kim,Wi‐Sun Ryu,Ho Sung Kim
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:55 (6): 1609-1618 被引量:3
标识
DOI:10.1161/strokeaha.123.045772
摘要

BACKGROUND: Early identification of large vessel occlusion (LVO) in patients with ischemic stroke is crucial for timely interventions. We propose a machine learning–based algorithm (JLK-CTL) that uses handcrafted features from noncontrast computed tomography to predict LVO. METHODS: We included patients with ischemic stroke who underwent concurrent noncontrast computed tomography and computed tomography angiography in seven hospitals. Patients from 5 of these hospitals, admitted between May 2011 and March 2015, were randomly divided into training and internal validation (9:1 ratio). Those from the remaining 2 hospitals, admitted between March 2021 and September 2021, were designated for external validation. From each noncontrast computed tomography scan, we extracted differences in volume, tissue density, and Hounsfield unit distribution between bihemispheric regions (striatocapsular, insula, M1–M3, and M4–M6, modified from the Alberta Stroke Program Early Computed Tomography Score). A deep learning algorithm was used to incorporate clot signs as an additional feature. Machine learning models, including ExtraTrees, random forest, extreme gradient boosting, support vector machine, and multilayer perceptron, as well as a deep learning model, were trained and evaluated. Additionally, we assessed the models’ performance after incorporating the National Institutes of Health Stroke Scale scores as an additional feature. RESULTS: Among 2919 patients, 83 were excluded. Across the training (n=2463), internal validation (n=275), and external validation (n=95) datasets, the mean ages were 68.5±12.4, 67.6±13.8, and 67.9±13.6 years, respectively. The proportions of men were 57%, 53%, and 59%, with LVO prevalences of 17.0%, 16.4%, and 26.3%, respectively. In the external validation, the ExtraTrees model achieved a robust area under the curve of 0.888 (95% CI, 0.850–0.925), with a sensitivity of 80.1% (95% CI, 72.0–88.1) and a specificity of 88.6% (95% CI, 84.7–92.5). Adding the National Institutes of Health Stroke Scale score to the ExtraTrees model increased sensitivity (from 80.1% to 92.1%) while maintaining specificity. CONCLUSIONS: Our algorithm provides reliable predictions of LVO using noncontrast computed tomography. By enabling early LVO identification, our algorithm has the potential to expedite the stroke workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杉杉完成签到 ,获得积分10
1秒前
白嫖论文完成签到 ,获得积分10
2秒前
迈克老狼发布了新的文献求助10
5秒前
佰斯特威应助负责的方盒采纳,获得30
8秒前
8秒前
Graham完成签到,获得积分10
9秒前
兔兔完成签到 ,获得积分10
10秒前
evelyn完成签到 ,获得积分10
11秒前
haralee完成签到 ,获得积分10
12秒前
吕广德发布了新的文献求助10
15秒前
17秒前
小米完成签到,获得积分20
18秒前
星辰大海应助负责的方盒采纳,获得10
18秒前
都找到了完成签到,获得积分10
19秒前
SC武发布了新的文献求助10
21秒前
坚强亦丝应助yangyang采纳,获得10
21秒前
情怀应助小米采纳,获得10
26秒前
LeungYM完成签到 ,获得积分10
28秒前
SSS完成签到,获得积分10
29秒前
王圆圆完成签到 ,获得积分10
30秒前
ccboom完成签到 ,获得积分10
30秒前
xier完成签到 ,获得积分10
30秒前
32秒前
34秒前
银杏完成签到,获得积分10
34秒前
龟龟完成签到 ,获得积分10
38秒前
科研小民工应助JCL采纳,获得30
38秒前
怕孤单的Hannah完成签到 ,获得积分10
38秒前
云青完成签到,获得积分10
39秒前
41秒前
cdercder应助WFY采纳,获得10
49秒前
彭于晏应助吕广德采纳,获得10
49秒前
SC武完成签到,获得积分10
50秒前
早安完成签到,获得积分10
51秒前
ikun0000完成签到,获得积分10
52秒前
迟大猫应助贾舒涵采纳,获得30
55秒前
老天师一巴掌完成签到 ,获得积分10
56秒前
义气小白菜完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674629
求助须知:如何正确求助?哪些是违规求助? 3229838
关于积分的说明 9787196
捐赠科研通 2940440
什么是DOI,文献DOI怎么找? 1611972
邀请新用户注册赠送积分活动 761063
科研通“疑难数据库(出版商)”最低求助积分说明 736488