Automated Prediction of Proximal Middle Cerebral Artery Occlusions in Noncontrast Brain Computed Tomography

医学 计算机断层摄影术 计算机断层血管造影 霍恩斯菲尔德秤 大脑中动脉 放射科 冲程(发动机) 人工智能 缺血 内科学 机械工程 工程类 计算机科学
作者
Pyeong Eun Kim,Hyojung Yang,Dongmin Kim,Leonard Sunwoo,Chi Kyung Kim,Beom Joon Kim,Joon‐Tae Kim,Wi‐Sun Ryu,Ho Sung Kim
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:55 (6): 1609-1618 被引量:2
标识
DOI:10.1161/strokeaha.123.045772
摘要

BACKGROUND: Early identification of large vessel occlusion (LVO) in patients with ischemic stroke is crucial for timely interventions. We propose a machine learning–based algorithm (JLK-CTL) that uses handcrafted features from noncontrast computed tomography to predict LVO. METHODS: We included patients with ischemic stroke who underwent concurrent noncontrast computed tomography and computed tomography angiography in seven hospitals. Patients from 5 of these hospitals, admitted between May 2011 and March 2015, were randomly divided into training and internal validation (9:1 ratio). Those from the remaining 2 hospitals, admitted between March 2021 and September 2021, were designated for external validation. From each noncontrast computed tomography scan, we extracted differences in volume, tissue density, and Hounsfield unit distribution between bihemispheric regions (striatocapsular, insula, M1–M3, and M4–M6, modified from the Alberta Stroke Program Early Computed Tomography Score). A deep learning algorithm was used to incorporate clot signs as an additional feature. Machine learning models, including ExtraTrees, random forest, extreme gradient boosting, support vector machine, and multilayer perceptron, as well as a deep learning model, were trained and evaluated. Additionally, we assessed the models’ performance after incorporating the National Institutes of Health Stroke Scale scores as an additional feature. RESULTS: Among 2919 patients, 83 were excluded. Across the training (n=2463), internal validation (n=275), and external validation (n=95) datasets, the mean ages were 68.5±12.4, 67.6±13.8, and 67.9±13.6 years, respectively. The proportions of men were 57%, 53%, and 59%, with LVO prevalences of 17.0%, 16.4%, and 26.3%, respectively. In the external validation, the ExtraTrees model achieved a robust area under the curve of 0.888 (95% CI, 0.850–0.925), with a sensitivity of 80.1% (95% CI, 72.0–88.1) and a specificity of 88.6% (95% CI, 84.7–92.5). Adding the National Institutes of Health Stroke Scale score to the ExtraTrees model increased sensitivity (from 80.1% to 92.1%) while maintaining specificity. CONCLUSIONS: Our algorithm provides reliable predictions of LVO using noncontrast computed tomography. By enabling early LVO identification, our algorithm has the potential to expedite the stroke workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助专注寻菱采纳,获得10
刚刚
研友_Fan发布了新的文献求助30
刚刚
1秒前
Cryo发布了新的文献求助10
1秒前
jp完成签到,获得积分10
1秒前
3秒前
3秒前
3秒前
4秒前
ding应助科研小牛马采纳,获得10
4秒前
5秒前
5秒前
Owen应助Lily采纳,获得10
6秒前
称心的三德完成签到,获得积分10
6秒前
晓晓来了发布了新的文献求助10
6秒前
diegomht完成签到,获得积分20
6秒前
7秒前
7秒前
QQ发布了新的文献求助10
7秒前
8秒前
lmh发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
Anar完成签到,获得积分10
9秒前
蓝兰发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
小宋爱吃鱼完成签到,获得积分20
11秒前
HHH发布了新的文献求助10
11秒前
zzzzz完成签到,获得积分10
11秒前
12秒前
12秒前
专注寻菱发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
14秒前
科研小王完成签到,获得积分10
14秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3119837
求助须知:如何正确求助?哪些是违规求助? 2770280
关于积分的说明 7703883
捐赠科研通 2425650
什么是DOI,文献DOI怎么找? 1288160
科研通“疑难数据库(出版商)”最低求助积分说明 620913
版权声明 599970