多溴联苯醚
氧化应激
医学
生理学
怀孕
置信区间
队列
内科学
内分泌学
化学
生物
污染物
有机化学
遗传学
作者
Neha Sehgal,Rachel Morello‐Frosch,Amy Padula,Erin DeMicco,Yunzhu Wang,Sabrina Smith,June-Soo Park,Ginger L. Milne,Tracey J. Woodruff,Stephanie M. Eick
摘要
Abstract Polybrominated diphenyl ethers (PBDEs) exposure is associated with preterm birth. Laboratory studies suggest that PBDEs lead to elevated oxidative stress, a known contributor to preterm birth in epidemiologic studies. We hypothesized that elevated levels of PBDEs would be associated with increased oxidative stress during human pregnancy. Participants in this analysis were enrolled in the Chemicals in Our Bodies cohort and resided in the San Francisco Bay Area (N=201). Four PBDEs (BDE-47, -99, -100, -153) were measured in second trimester serum. Urinary oxidative stress biomarkers were measured at two timepoints (second and third trimester) and included 8-isoprostane-prostaglandin-F2α [8-iso-PGF2α], 2,3-dinor-5,6-dihydro-8-iso-PGF2α, 2,3-dinor-8-iso-PGF2α, and prostaglandin-F2α [PGF2α]. Associations between individual PBDEs and oxidative stress biomarkers (averaged and trimester specific) were examined using linear regression. Quantile g-computation and Bayesian kernel machine regression (BKMR) were used to assess cumulative effects of PBDEs. Quantile g-computation showed that higher concentrations of PBDEs were associated with increasing 8-iso-PGF2α, 2,3-dinor-8-iso-PGF2α, and PGF2α. Associations were greatest in magnitude for second trimester levels of 2,3-dinor-8-iso-PGF2α (mean change per quartile increase=0.25, 95% confidence interval=0.09, 0.41). Associations were similar using BKMR and linear regression. Our findings suggest that oxidative stress may be a plausible biological pathway by which PBDE exposure might lead to preterm birth.
科研通智能强力驱动
Strongly Powered by AbleSci AI