Clinical named entity recognition for percutaneous coronary intervention surgical information with hybrid neural network

传统PCI 经皮冠状动脉介入治疗 计算机科学 命名实体识别 条件随机场 卷积神经网络 人工智能 编码器 深度学习 模式识别(心理学) 医学 心脏病学 心肌梗塞 经济 管理 操作系统 任务(项目管理)
作者
L.Z. Wang,Yuhang Zheng,Yi Chen,H. Y. Xu,Feng Li
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (6)
标识
DOI:10.1063/5.0174442
摘要

Percutaneous coronary intervention (PCI) has become a vital treatment approach for coronary artery disease, but the clinical data of PCI cannot be directly utilized due to its unstructured characteristics. The existing clinical named entity recognition (CNER) has been used to identify specific entities such as body parts, drugs, and diseases, but its specific potential in PCI clinical texts remains largely unexplored. How to effectively use CNER to deeply mine the information in the existing PCI clinical records is worth studying. In this paper, a total of 24 267 corpora are collected from the Cardiovascular Disease Treatment Center of the People's Hospital of Liaoning Province in China. We select three types of clinical record texts of fine-grained PCI surgical information, from which 5.8% of representative surgical records of PCI patients are selected as datasets for labeling. To fully utilize global information and multi-level semantic features, we design a novel character-level vector embedding method and further propose a new hybrid model based on it. Based on the classic Bidirectional Long Short-Term Memory Network (BiLSTM), the model further integrates Convolutional Neural Networks (CNNs) and Bidirectional Encoder Representations from Transformers (BERTs) for feature extraction and representation, and finally uses Conditional Random Field (CRF) for decoding and predicting label sequences. This hybrid model is referred to as BCC-BiLSTM in this paper. In order to verify the performance of the proposed hybrid model for extracting PCI surgical information, we simultaneously compare both representative traditional and intelligent methods. Under the same circumstances, compared with other intelligent methods, the BCC-BiLSTM proposed in this paper reduces the word vector dimension by 15%, and the F1 score reaches 86.2% in named entity recognition of PCI clinical texts, which is 26.4% higher than that of HMM. The improvement is 1.2% higher than BiLSTM + CRF and 0.7% higher than the most popular BERT + BiLSTM + CRF. Compared with the representative models, the hybrid model has better performance and can achieve optimal results faster in the model training process, so it has good clinical application prospects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
第1008个July完成签到 ,获得积分10
刚刚
小白发布了新的文献求助10
刚刚
JinwenShi发布了新的文献求助20
刚刚
1秒前
风华正茂LC完成签到,获得积分10
2秒前
ff完成签到,获得积分10
3秒前
WN发布了新的文献求助10
4秒前
小萝卜完成签到,获得积分10
4秒前
Oreki完成签到,获得积分10
4秒前
李沐唅完成签到 ,获得积分10
5秒前
Charlie完成签到 ,获得积分10
6秒前
优秀的方盒完成签到 ,获得积分10
7秒前
7秒前
cdercder应助ff采纳,获得10
8秒前
betyby完成签到 ,获得积分10
10秒前
10秒前
wanglei完成签到,获得积分10
10秒前
11秒前
jiajiajai完成签到,获得积分10
11秒前
Orange应助无语采纳,获得10
12秒前
13秒前
仁爱钧完成签到,获得积分10
13秒前
Donby完成签到,获得积分10
14秒前
zws发布了新的文献求助10
14秒前
舒心雁桃关注了科研通微信公众号
14秒前
15秒前
15秒前
慢慢的地理人完成签到,获得积分10
15秒前
yaoyao想毕业完成签到,获得积分10
17秒前
发阿发完成签到,获得积分10
18秒前
JinwenShi发布了新的文献求助20
18秒前
19秒前
淋湿的雨完成签到 ,获得积分10
19秒前
dnmd完成签到,获得积分10
19秒前
:9发布了新的文献求助10
19秒前
等待香寒完成签到 ,获得积分10
19秒前
19秒前
SciGPT应助上的工人进场采纳,获得10
20秒前
11完成签到 ,获得积分10
20秒前
豪123456完成签到 ,获得积分10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740133
求助须知:如何正确求助?哪些是违规求助? 3283079
关于积分的说明 10033717
捐赠科研通 2999959
什么是DOI,文献DOI怎么找? 1646230
邀请新用户注册赠送积分活动 783441
科研通“疑难数据库(出版商)”最低求助积分说明 750374