Learning At a Glance: Towards Interpretable Data-Limited Continual Semantic Segmentation Via Semantic-Invariance Modelling

计算机科学 可解释性 人工智能 分割 机器学习 稳健性(进化) 生物化学 化学 基因
作者
Bo Yuan,Danpei Zhao,Zhenwei Shi
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 7909-7923 被引量:1
标识
DOI:10.1109/tpami.2024.3396809
摘要

Continual semantic segmentation (CSS) based on incremental learning (IL) is a great endeavour in developing human- like segmentation models. However, current CSS approaches encounter challenges in the trade-off between preserving old knowledge and learning new ones, where they still need large-scale annotated data for incremental training and lack interpretability. In this paper, we present Learning at a Glance (LAG), an efficient, robust, human- like and interpretable approach for CSS. Specifically, LAG is a simple and model-agnostic architecture, yet it achieves competitive CSS efficiency with limited incremental data. Inspired by human- like recognition patterns, we propose a semantic-invariance modelling approach via semantic features decoupling that simultaneously reconciles solid knowledge inheritance and new-term learning. Concretely, the proposed decoupling manner includes two ways, i.e., channel- wise decoupling and spatial-level neuron-relevant semantic consistency. Our approach preserves semantic-invariant knowledge as solid prototypes to alleviate catastrophic forgetting, while also constraining sample-specific contents through an asymmetric contrastive learning method to enhance model robustness during IL steps. Experimental results in multiple datasets validate the effectiveness of the proposed method. Furthermore, we introduce a novel CSS protocol that better reflects realistic data-limited CSS settings, and LAG achieves superior performance under multiple data-limited conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蟹关注了科研通微信公众号
2秒前
3秒前
wb发布了新的文献求助10
3秒前
kiki完成签到,获得积分10
4秒前
orixero应助Yucong采纳,获得10
4秒前
4秒前
搜集达人应助qaw采纳,获得10
4秒前
5秒前
小二郎应助初识采纳,获得10
5秒前
Oying完成签到,获得积分10
6秒前
伶俐的冷菱完成签到,获得积分10
6秒前
7秒前
可爱的函函应助Tony12采纳,获得10
8秒前
风再起时发布了新的文献求助10
8秒前
9秒前
小魏哥哥发布了新的文献求助10
9秒前
SciGPT应助甲乙丙丁采纳,获得10
9秒前
Daniel完成签到,获得积分10
10秒前
haixia发布了新的文献求助10
10秒前
孤独梦曼完成签到,获得积分10
10秒前
酷波er应助忧心的山槐采纳,获得10
10秒前
11秒前
研友_VZG7GZ应助Zhaowx采纳,获得10
11秒前
斯文败类应助安详安寒采纳,获得10
11秒前
12秒前
13秒前
姽婳wy发布了新的文献求助20
13秒前
小马哥发布了新的文献求助10
14秒前
wqs66616发布了新的文献求助10
14秒前
15秒前
英俊的铭应助777采纳,获得10
15秒前
en发布了新的文献求助10
15秒前
幸福大白发布了新的文献求助10
15秒前
FashionBoy应助妃莫笑采纳,获得10
16秒前
QQ完成签到,获得积分10
16秒前
16秒前
17秒前
顺利可兰发布了新的文献求助10
17秒前
天天快乐应助博修采纳,获得30
18秒前
18秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218457
求助须知:如何正确求助?哪些是违规求助? 2867704
关于积分的说明 8157719
捐赠科研通 2534685
什么是DOI,文献DOI怎么找? 1367140
科研通“疑难数据库(出版商)”最低求助积分说明 644934
邀请新用户注册赠送积分活动 618123