Improved YOLO v7 for Sustainable Agriculture Significantly Improves Precision Rate for Chinese Cabbage (Brassica pekinensis Rupr.) Seedling Belt (CCSB) Detection

苗木 芸苔属 油菜 农业 农学 生物 生态学
作者
Xiaomei Gao,Gang Wang,Jiangtao Qi,Qingxia Wang,Meiqi Xiang,Kexin Song,Zihao Zhou
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (11): 4759-4759 被引量:1
标识
DOI:10.3390/su16114759
摘要

Precise navigation in agricultural applications necessitates accurate guidance from the seedling belt, which the Global Positioning System (GPS) alone cannot provide. The overlapping leaves of Chinese cabbage (Brassica pekinensis Rupr.) present significant challenges for seedling belt fitting due to difficulties in plant identification. This study aims to address these challenges by improving the You Only Look Once (YOLO) v7 model with a novel approach that decouples its network head deriving from the Faster-Regions with Convolutional Neural Network (Faster R-CNN) architecture. Additionally, this study introduced a BiFormer attention mechanism to accurately identify the centers of overlapping Chinese cabbages. Using these identified centers and pixel distance verification, this study achieved precise fitting of the Chinese cabbage seedling belt (CCSB). Our experimental results demonstrated a significant improvement in performance metrics, with our improved model achieving a 2.5% increase in mean average precision compared to the original YOLO v7. Furthermore, our approach attained a 94.2% accuracy in CCSB fitting and a 91.3% Chinese cabbage identification rate. Compared to traditional methods such as the Hough transform and linear regression, our method showed an 18.6% increase in the CCSB identification rate and a 17.6% improvement in angle accuracy. The novelty of this study lies in the innovative combination of the YOLO v7 model with a decoupled head and the BiFormer attention mechanism, which together advance the identification and fitting of overlapping leafy vegetables. This advancement supports intelligent weeding, reduces the reliance on chemical herbicides, and promotes safer, more sustainable agricultural practices. Our research not only improves the accuracy of overlapping vegetable identification, but also provides a robust framework for enhancing precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一发布了新的文献求助10
1秒前
zzzggb给zzzggb的求助进行了留言
1秒前
hzs完成签到,获得积分10
1秒前
pannyfeng完成签到,获得积分10
3秒前
3秒前
song发布了新的文献求助10
3秒前
刘欣完成签到,获得积分10
4秒前
太白金鑫发布了新的文献求助10
5秒前
7秒前
7秒前
9秒前
mmmm发布了新的文献求助10
9秒前
CipherSage应助kkee采纳,获得10
9秒前
WZJ完成签到,获得积分10
9秒前
10秒前
alhn完成签到,获得积分20
11秒前
江岸与城发布了新的文献求助30
11秒前
太白金鑫完成签到,获得积分20
11秒前
11秒前
科研通AI2S应助感动语蝶采纳,获得10
11秒前
ddd发布了新的文献求助10
11秒前
12秒前
于大本事发布了新的文献求助10
15秒前
壮观雁开完成签到,获得积分10
16秒前
18秒前
生动的白萱关注了科研通微信公众号
18秒前
ccq发布了新的文献求助20
18秒前
苦行僧完成签到 ,获得积分10
20秒前
江岸与城完成签到,获得积分10
21秒前
xunlux完成签到,获得积分10
22秒前
22秒前
喜宝发布了新的文献求助10
24秒前
24秒前
25秒前
星辰大海应助mark163采纳,获得10
25秒前
竹焚完成签到 ,获得积分10
27秒前
阅遍SCI完成签到,获得积分10
28秒前
28秒前
Lucas应助冰红茶采纳,获得10
28秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207040
求助须知:如何正确求助?哪些是违规求助? 2856445
关于积分的说明 8104758
捐赠科研通 2521574
什么是DOI,文献DOI怎么找? 1354842
科研通“疑难数据库(出版商)”最低求助积分说明 642071
邀请新用户注册赠送积分活动 613343