化学
皮克林乳液
化学工程
天体生物学
纳米技术
有机化学
物理
材料科学
工程类
乳状液
作者
Ke Li,Houbing Zou,Xili Tong,Hengquan Yang
摘要
Developing new methods to engineer photobiocatalytic reactions is of utmost significance for artificial photosynthesis, but it remains a grand challenge due to the intrinsic incompatibility of biocatalysts with photocatalysts. In this work, photocatalysts and enzymes were spatially colocalized at Pickering droplet interfaces, where the reaction microenvironment and the spatial distance between two distinct catalysts were exquisitely regulated to achieve unprecedented photobiocatalytic cascade reactions. As proof of the concept, ultrathin graphitic carbon nitride nanosheets loaded with Au nanoparticles were precisely positioned in the outer interfacial layer of Pickering oil droplets to produce H2O2 under light irradiation, while enzymes were exactly placed in the inner interfacial layer to catalyze the subsequent biocatalytic oxidation reactions using in situ formed H2O2 as an oxidant. In the alkene epoxidation and thioether oxidation, our interfacial photobiocatalytic cascades showed a 2.0–5.8-fold higher overall reaction efficiency than the photobiocatalytic cascades in the bulk water phase. It was demonstrated that spatial localization of the photocatalyst and the enzyme at Pickering oil droplet interfaces not only provided their respective preferable reaction environments and intimate proximity for rapid H2O2 transport but also protected the enzyme from oxidative inactivation caused by the photogenerated species. These remarkable interfacial effects contributed to the significantly enhanced photobiocatalytic cascading efficiency. Our work presents an innovative photobiocatalytic reaction system with manifold benefits, providing a cutting-edge platform for solar-driven chemical transformations via photobiocatalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI