Quantitative detection of typical bridge surface damages based on global attention mechanism and YOLOv7 network

损害赔偿 分割 桥(图论) 剥落 人工智能 块(置换群论) 特征(语言学) 计算机科学 结构工程 工程类 数学 法学 政治学 医学 内科学 语言学 哲学 几何学
作者
Youhao Ni,Hao Wang,Jianxiao Mao,Zhuo Xi,Zhen-Yi Chen
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:6
标识
DOI:10.1177/14759217241246953
摘要

Surface damages of reinforced concrete and steel bridges, for example, crack and corrosion, are usually regarded as indicators of internal structural defects, hence can be used to assess the structural health condition. Quantitative segmentation of these surface damages via computer vision is important yet challenging due to the limited accuracy of traditional semantic segmentation methods. To overcome this challenge, this study proposes a modified semantic segmentation method that can distinguish multiple surface damages, based on you only look once version 7 (YOLOv7) and global attention mechanism (GAM), namely, YOLOv7-SEG-GAM. Initially, the extended efficient layer aggregation network in the backbone network of YOLOv7 was substituted with GAM, followed by the integration of a segmentation head utilizing the three-scale feature map, thus establishing a segmentation network. Subsequently, graphical examples depicting five types of reinforced concrete and steel bridge surface damages, that is, concrete cracks, steel corrosion, exposed rebar, spalling, and efflorescence, are gathered and meticulously labeled to create a semantic segmentation dataset tailored for training the network. Afterwards, a comparative study is undertaken to analyze the effectiveness of GAM, squeeze-and-excitation networks, and convolutional block attention module in enhancing the network’s performance. Ultimately, a calibration device was developed utilizing a laser rangefinder and a smartphone to enable quantitative assessment of bridge damages in real size. Based on the identical dataset, the evaluated accuracy of YOLOv7-SEG-GAM was compared with DeepLabV3+, BiSeNet, and improved semantic segmentation networks. The results indicate that the mean pixel accuracy and mean intersection over union values achieved by YOLOv7-SEG-GAM were 0.881 and 0.782, respectively, surpassing those of DeepLabV3+ and BiSeNet. This study successfully enables pixel-level segmentation of bridge damages and offers valuable insights for quantitative segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黄饱饱完成签到,获得积分10
刚刚
red发布了新的文献求助10
1秒前
龙仔完成签到,获得积分10
1秒前
笑陈发布了新的文献求助10
2秒前
3秒前
林臻妤完成签到,获得积分10
4秒前
爱爱完成签到 ,获得积分10
4秒前
tx完成签到,获得积分10
4秒前
彭瞻完成签到 ,获得积分10
5秒前
qiao应助修辛采纳,获得10
5秒前
5秒前
昏睡的蟠桃应助duanhuiyuan采纳,获得200
7秒前
叨叨完成签到,获得积分10
7秒前
充电宝应助默11采纳,获得10
8秒前
Hello应助默11采纳,获得10
8秒前
ding应助默11采纳,获得10
8秒前
8秒前
魏你大爷发布了新的文献求助10
8秒前
搜集达人应助red采纳,获得10
8秒前
9秒前
9秒前
Jasper应助7Hours采纳,获得10
9秒前
研友_VZG7GZ应助迷路的睫毛采纳,获得10
9秒前
10秒前
10秒前
震震应助夕荀采纳,获得20
10秒前
10秒前
沉寂完成签到,获得积分10
11秒前
11秒前
13秒前
14秒前
脑洞疼应助默11采纳,获得10
14秒前
思源应助默11采纳,获得10
14秒前
JamesPei应助默11采纳,获得10
14秒前
orixero应助默11采纳,获得10
14秒前
Akim应助默11采纳,获得10
14秒前
酷波er应助默11采纳,获得10
15秒前
隐形曼青应助默11采纳,获得10
15秒前
爆米花应助默11采纳,获得10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775279
求助须知:如何正确求助?哪些是违规求助? 3320994
关于积分的说明 10202941
捐赠科研通 3035869
什么是DOI,文献DOI怎么找? 1665800
邀请新用户注册赠送积分活动 797104
科研通“疑难数据库(出版商)”最低求助积分说明 757712