Empirical uncertainty evaluation for the pose of a kinematic LiDAR-based multi-sensor system

惯性测量装置 计算机科学 激光雷达 测距 运动学 传感器融合 背景(考古学) 卡尔曼滤波器 基本事实 弹道 马氏距离 一致性(知识库) 人工智能 激光跟踪器 测量不确定度 计算机视觉 数据挖掘 遥感 数学 地理 统计 电信 物理 考古 天文 激光器 光学 经典力学
作者
Dominik Ernst,Sören Vogel,Ingo Neumann,Hamza Alkhatib
出处
期刊:Journal of Applied Geodesy [De Gruyter]
卷期号:18 (4): 629-642 被引量:1
标识
DOI:10.1515/jag-2023-0098
摘要

Abstract Kinematic multi-sensor systems (MSS) describe their movements through six-degree-of-freedom trajectories, which are often evaluated primarily for accuracy. However, understanding their self-reported uncertainty is crucial, especially when operating in diverse environments like urban, industrial, or natural settings. This is important, so the following algorithms can provide correct and safe decisions, i.e. for autonomous driving. In the context of localization, light detection and ranging sensors (LiDARs) are widely applied for tasks such as generating, updating, and integrating information from maps supporting other sensors to estimate trajectories. However, popular low-cost LiDARs deviate from other geodetic sensors in their uncertainty modeling. This paper therefore demonstrates the uncertainty evaluation of a LiDAR-based MSS localizing itself using an inertial measurement unit (IMU) and matching LiDAR observations to a known map. The necessary steps for accomplishing the sensor data fusion in a novel Error State Kalman filter (ESKF) will be presented considering the influences of the sensor uncertainties and their combination. The results provide new insights into the impact of random and systematic deviations resulting from parameters and their uncertainties established in prior calibrations. The evaluation is done using the Mahalanobis distance to consider the deviations of the trajectory from the ground truth weighted by the self-reported uncertainty, and to evaluate the consistency in hypothesis testing. The evaluation is performed using a real data set obtained from an MSS consisting of a tactical grade IMU and a Velodyne Puck in combination with reference data by a Laser Tracker in a laboratory environment. The data set consists of measurements for calibrations and multiple kinematic experiments. In the first step, the data set is simulated based on the Laser Tracker measurements to provide a baseline for the results under assumed perfect corrections. In comparison, the results using a more realistic simulated data set and the real IMU and LiDAR measurements provide deviations about a factor of five higher leading to an inconsistent estimation. The results offer insights into the open challenges related to the assumptions for integrating low-cost LiDARs in MSSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江河湖海完成签到,获得积分20
刚刚
万金博完成签到,获得积分10
1秒前
喜悦尔琴完成签到,获得积分10
1秒前
2秒前
太懂我了吧完成签到,获得积分10
2秒前
小哈发布了新的文献求助20
3秒前
学术混子发布了新的文献求助10
3秒前
3秒前
可爱的函函应助悦valiant采纳,获得10
3秒前
Gra完成签到,获得积分10
4秒前
chu完成签到,获得积分10
4秒前
6秒前
鲤鱼问雁发布了新的文献求助10
6秒前
Shining完成签到,获得积分10
7秒前
Hou完成签到,获得积分10
8秒前
smkx完成签到,获得积分10
8秒前
jnoker应助柯不正采纳,获得10
9秒前
酷波er应助cabcij采纳,获得10
9秒前
10秒前
英俊的铭应助YLQ采纳,获得30
10秒前
10秒前
el完成签到,获得积分10
10秒前
11秒前
小哈完成签到,获得积分10
12秒前
12秒前
令狐子轩完成签到,获得积分10
12秒前
12秒前
糕米发布了新的文献求助10
13秒前
科研通AI2S应助Hou采纳,获得10
13秒前
13秒前
13秒前
FashionBoy应助机智的乌采纳,获得10
14秒前
14秒前
14秒前
123应助qcomputer采纳,获得100
15秒前
Jane完成签到,获得积分10
15秒前
孙小雨发布了新的文献求助10
16秒前
香蕉觅云应助黎小静采纳,获得10
17秒前
17秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312684
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523532
捐赠科研通 2620981
什么是DOI,文献DOI怎么找? 1433226
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650255