Dual Causes Generation Assisted Model for Multimodal Aspect-Based Sentiment Classification

对偶(语法数字) 计算机科学 人工智能 语言学 哲学
作者
Rui Fan,Tingting He,Menghan Chen,Mengyuan Zhang,Xinhui Tu,Ming Dong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2024.3415028
摘要

Multimodal aspect-based sentiment classification (MABSC) aims to identify the sentiment polarity toward specific aspects in multimodal data. It has gained significant attention with the increasing use of social media platforms. Existing approaches primarily focus on analyzing the content of posts to predict sentiment. However, they often struggle with limited contextual information inherent in social media posts, hindering accurate sentiment detection. To overcome this issue, we propose a novel multimodal dual cause analysis (MDCA) method to track the underlying causes behind expressed sentiments. MDCA can provide additional reasoning cause (RC) and direct cause (DC) to explain why users express certain emotions, thus helping improve the accuracy of sentiment prediction. To develop a model with MDCA, we construct MABSC datasets with RC and DC by utilizing large language models (LLMs) and visual-language models. Subsequently, we devise a multitask learning framework that leverages the datasets with cause data to train a small generative model, which can generate RC and DC, and predict the sentiment assisted by these causes. Experimental results on MABSC benchmark datasets demonstrate that our MDCA model achieves the state-of-the-art performance, and the small fine-tuned model exhibits superior adaptability to MABSC compared to large models like ChatGPT and BLIP-2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅尔白发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
Owen应助ZHANG采纳,获得30
4秒前
5秒前
ss完成签到,获得积分10
5秒前
耶律遗风发布了新的文献求助10
5秒前
机灵海之完成签到 ,获得积分10
5秒前
默默焱发布了新的文献求助10
5秒前
shidizai发布了新的文献求助10
5秒前
烟花应助前进的小宅熊采纳,获得10
6秒前
7秒前
7秒前
碧蓝怜阳完成签到,获得积分10
7秒前
zzc完成签到,获得积分20
7秒前
乔乔完成签到,获得积分10
8秒前
阿白发布了新的文献求助10
8秒前
9秒前
9秒前
yule完成签到 ,获得积分10
10秒前
ReYoRi完成签到,获得积分10
10秒前
10秒前
儒雅尔白完成签到,获得积分20
10秒前
调研昵称发布了新的文献求助10
10秒前
12秒前
12秒前
ReYoRi发布了新的文献求助10
13秒前
13秒前
赘婿应助积极向上采纳,获得10
13秒前
ZXH发布了新的文献求助10
13秒前
微笑涔雨应助灵巧的馒头采纳,获得10
13秒前
刻苦莫言发布了新的文献求助10
14秒前
杳鸢应助Reftro采纳,获得10
14秒前
楠楠完成签到,获得积分10
14秒前
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228868
求助须知:如何正确求助?哪些是违规求助? 2876648
关于积分的说明 8195944
捐赠科研通 2543914
什么是DOI,文献DOI怎么找? 1374103
科研通“疑难数据库(出版商)”最低求助积分说明 646872
邀请新用户注册赠送积分活动 621521