重量分析法
遥感
环境科学
卫星
卫星测高
地质学
高度计
航空航天工程
石油工程
工程类
储层建模
作者
Fengwei Wang,Qing Zhou,Haipeng Gao,Yanlin Wen,Shijian Zhou
摘要
The monitoring of Poyang Lake water area and storage changes using remote sensing and satellite gravimetry techniques is valuable for maintaining regional water resource security and addressing the challenges of global climate change. In this study, remote sensing datasets from Landsat images (Landsat 5, 7, 8 and 9) and three Gravity Recovery and Climate Experiment (GRACE) and Gravity Follow-on (GRACE-FO) mascon solutions were jointly used to evaluate the water area and storage changes in response to global and regional climate changes. The results showed that seasonal characteristics existed in the terrestrial water storage (TWS) and water area changes of Poyang Lake, with nearly no significant long-term trend, for the period from April 2002 to December 2022. Poyang Lake exhibited the largest water area in June and July every year and then demonstrated a downward trend, with relatively smaller water areas in January and November, confirmed by the estimated TWS changes. For the flood (August 2010) and drought (September 2022) events, the water area changes are 3032 km2 and 813.18 km2, with those estimated TWS changes 17.37 cm and −17.46 cm, respectively. The maximum and minimum Poyang Lake area differences exceeded 2700 km2. The estimated terrestrial water storage changes in Poyang Lake derived from the three GRACE/GRACE-FO mascon solutions agreed well, with all correlation coefficients higher than 0.92. There was a significant positive correlation higher than 0.75 between the area and TWS changes derived from the two independent monitoring techniques. Therefore, it is reasonable to conclude that combined remote sensing with satellite gravimetric techniques can better interpret the response of Poyang Lake to climate change from the aspects of water area and TWS changes more efficiently.
科研通智能强力驱动
Strongly Powered by AbleSci AI