High altitude computational lidar emulation and machine learning reconstruction for Earth sciences

仿真 激光雷达 计算机科学 遥感 人工智能 地质学 经济增长 经济
作者
Gonzalo R. Arce,Alejandro Ramirez,Nestor Porras
标识
DOI:10.1117/12.3025299
摘要

Lidar remote sensing systems are utilized across different platforms such as satellites, airplanes, and drones. These platforms play a crucial role in determining the sampling characteristics of the imaging system they carry. For instance, low-altitude lidars offer high photon count and spatial resolution but are limited to small, localized areas. In contrast, satellite lidars cover larger areas globally but suffer from lower photon counts and sparse sampling along swath line trajectories. This paper presents current state-of-the-art approaches in addressing the limitations of satellite imaging systems using a novel class of satellite remote sensing lidars coined Compressive Satellite Lidars (CS-Lidars). CS-Lidars leverage compressive sensing and machine learning techniques to capture Earth's features from hundreds of kilometers above its surface. By doing so, they reconstruct 3D imagery with high resolution and coverage, akin to data collected from airborne platforms flying hundreds of meters above ground level. The paper also compares different machine learning methods used to reconstruct compressive lidar measurements, aiming for high-resolution, dense coverage, and broad field-of-view per swath pass. Training data for these machine learning models is obtained from NASA's G-LiHT imaging missions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
ABC完成签到,获得积分10
5秒前
liukanhai应助科研通管家采纳,获得10
5秒前
搜集达人应助Wang采纳,获得10
8秒前
9秒前
蒲蒲完成签到 ,获得积分10
12秒前
zhaosiqi完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助20
18秒前
23秒前
25秒前
月军完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
35秒前
江幻天完成签到,获得积分10
38秒前
韩钰小宝完成签到 ,获得积分10
49秒前
飞快的雅青完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
53秒前
Kidmuse完成签到,获得积分10
57秒前
追寻的续完成签到 ,获得积分10
57秒前
57秒前
bckl888完成签到,获得积分10
58秒前
58秒前
bill完成签到,获得积分10
59秒前
明理问柳发布了新的文献求助10
1分钟前
ky应助xiaoX12138采纳,获得10
1分钟前
明理问柳完成签到,获得积分10
1分钟前
坚强的嚣完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
gxzsdf完成签到 ,获得积分10
1分钟前
我思故我在完成签到,获得积分10
1分钟前
1分钟前
阿帕奇完成签到 ,获得积分10
1分钟前
Conner完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
wol007完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
Justtry完成签到 ,获得积分20
1分钟前
naiyouqiu1989完成签到,获得积分10
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
花生四烯酸完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613016
求助须知:如何正确求助?哪些是违规求助? 4018011
关于积分的说明 12436990
捐赠科研通 3700338
什么是DOI,文献DOI怎么找? 2040716
邀请新用户注册赠送积分活动 1073470
科研通“疑难数据库(出版商)”最低求助积分说明 957104