已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Digital-to-Physical Visual Consistency Optimization for Adversarial Patch Generation in Remote Sensing Scenes

对抗制 计算机科学 人工智能 计算机视觉 一致性(知识库)
作者
Jianqi Chen,Yilan Zhang,Chenyang Liu,Keyan Chen,Zhengxia Zou,Zhenwei Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2024.3397678
摘要

In contrast to digital image adversarial attacks, adversarial patch attacks involve physical operations that project crafted perturbations into real-world scenarios. During the digital-to-physical transition, adversarial patches inevitably undergo information distortion. Existing approaches focus on data augmentation and printer color gamut regularization to improve the generalization of adversarial patches to the physical world. However, these efforts overlook a critical issue within the adversarial patch crafting pipeline—namely, the significant disparity between the appearance of adversarial patches during the digital optimization phase and their manifestation in the physical world. This unexplored concern, termed "Digital-to-Physical Visual Inconsistency", introduces inconsistent objectives between the digital and physical realms, potentially skewing optimization directions for adversarial patches. To tackle this challenge, we propose a novel harmonization-based adversarial patch attack. Our approach involves the design of a self-supervised harmonization method, seamlessly integrated into the adversarial patch generation pipeline. This integration aligns the appearance of adversarial patches overlaid on digital images with the imaging environment of the background, ensuring a consistent optimization direction with the primary physical attack goal. We validate our method through extensive testing on the aerial object detection task. To enhance the controllability of environmental factors for method evaluation, we construct a dataset of 3D simulated scenarios using a graphics rendering engine. Extensive experiments on these scenarios demonstrate the efficacy of our approach. Our code and dataset are publicly accessible at https://github.com/WindVChen/VCO-AP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
阿司匹林完成签到 ,获得积分10
15秒前
科研通AI5应助北区小阿神采纳,获得30
18秒前
哇哦哦完成签到 ,获得积分10
22秒前
英姑应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
25秒前
完美世界应助科研通管家采纳,获得10
26秒前
香芋应助科研通管家采纳,获得60
26秒前
阿泽完成签到 ,获得积分10
29秒前
32秒前
想不出来完成签到 ,获得积分10
36秒前
专注雁桃发布了新的文献求助10
37秒前
洪妹妹完成签到 ,获得积分10
41秒前
小鱼完成签到 ,获得积分10
47秒前
养乐多敬你完成签到 ,获得积分10
47秒前
48秒前
51秒前
庄彧完成签到 ,获得积分10
52秒前
Karinaa完成签到,获得积分20
54秒前
momo发布了新的文献求助10
55秒前
C_Cppp完成签到 ,获得积分10
1分钟前
suodeheng完成签到,获得积分20
1分钟前
文子完成签到 ,获得积分10
1分钟前
suodeheng发布了新的文献求助200
1分钟前
1分钟前
深情的友易完成签到,获得积分10
1分钟前
Xx完成签到 ,获得积分10
1分钟前
Linson完成签到,获得积分10
1分钟前
耶耶发布了新的文献求助10
1分钟前
YAYG完成签到,获得积分20
1分钟前
西一阿铭发布了新的文献求助10
1分钟前
Emma完成签到,获得积分10
1分钟前
汉堡包应助专注雁桃采纳,获得10
1分钟前
1分钟前
1分钟前
Junly完成签到 ,获得积分10
1分钟前
1分钟前
暴躁的寻云完成签到 ,获得积分10
1分钟前
None完成签到 ,获得积分10
1分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725215
求助须知:如何正确求助?哪些是违规求助? 3270297
关于积分的说明 9965308
捐赠科研通 2985238
什么是DOI,文献DOI怎么找? 1637862
邀请新用户注册赠送积分活动 777738
科研通“疑难数据库(出版商)”最低求助积分说明 747171