亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets

注释 电池类型 计算生物学 基因 可解释性 生物 反褶积 转录组 细胞 基因表达 计算机科学 遗传学 人工智能 算法
作者
Hongjia Liu,Huamei Li,Amit Sharma,Huang Wen-juan,Duo Pan,Yu Gu,Liuming Lin,Xiao Sun,Hongde Liu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:2
标识
DOI:10.1093/bib/bbad179
摘要

Undoubtedly, single-cell RNA sequencing (scRNA-seq) has changed the research landscape by providing insights into heterogeneous, complex and rare cell populations. Given that more such data sets will become available in the near future, their accurate assessment with compatible and robust models for cell type annotation is a prerequisite. Considering this, herein, we developed scAnno (scRNA-seq data annotation), an automated annotation tool for scRNA-seq data sets primarily based on the single-cell cluster levels, using a joint deconvolution strategy and logistic regression. We explicitly constructed a reference profile for human (30 cell types and 50 human tissues) and a reference profile for mouse (26 cell types and 50 mouse tissues) to support this novel methodology (scAnno). scAnno offers a possibility to obtain genes with high expression and specificity in a given cell type as cell type-specific genes (marker genes) by combining co-expression genes with seed genes as a core. Of importance, scAnno can accurately identify cell type-specific genes based on cell type reference expression profiles without any prior information. Particularly, in the peripheral blood mononuclear cell data set, the marker genes identified by scAnno showed cell type-specific expression, and the majority of marker genes matched exactly with those included in the CellMarker database. Besides validating the flexibility and interpretability of scAnno in identifying marker genes, we also proved its superiority in cell type annotation over other cell type annotation tools (SingleR, scPred, CHETAH and scmap-cluster) through internal validation of data sets (average annotation accuracy: 99.05%) and cross-platform data sets (average annotation accuracy: 95.56%). Taken together, we established the first novel methodology that utilizes a deconvolution strategy for automated cell typing and is capable of being a significant application in broader scRNA-seq analysis. scAnno is available at https://github.com/liuhong-jia/scAnno.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
jiangzhixia发布了新的文献求助10
4秒前
13秒前
时尚的梦曼完成签到,获得积分10
18秒前
润润润完成签到 ,获得积分10
19秒前
了晨完成签到 ,获得积分10
27秒前
28秒前
舒心豪英完成签到 ,获得积分10
29秒前
jiangzhixia完成签到,获得积分10
31秒前
Brian完成签到,获得积分10
32秒前
石莫言发布了新的文献求助10
33秒前
手术刀完成签到 ,获得积分10
40秒前
糟糕的铁锤应助文武采纳,获得30
40秒前
共享精神应助科研小白采纳,获得10
1分钟前
1分钟前
1分钟前
wym发布了新的文献求助30
1分钟前
朴素夜梦发布了新的文献求助10
1分钟前
科研小白完成签到,获得积分10
1分钟前
wym完成签到,获得积分10
1分钟前
1分钟前
柯镇恶发布了新的文献求助10
1分钟前
乖乖完成签到 ,获得积分10
1分钟前
小宋完成签到,获得积分10
1分钟前
1分钟前
柯镇恶完成签到,获得积分10
1分钟前
tudou完成签到,获得积分10
1分钟前
1分钟前
欣欣完成签到 ,获得积分10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
Coconut发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
酷炫荷花发布了新的文献求助10
3分钟前
Omni发布了新的文献求助10
3分钟前
科研通AI2S应助隐形的迎南采纳,获得10
3分钟前
3分钟前
狸宝的小果子完成签到 ,获得积分10
3分钟前
隐形曼青应助wtt采纳,获得10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497453
求助须知:如何正确求助?哪些是违规求助? 3081931
关于积分的说明 9169839
捐赠科研通 2775181
什么是DOI,文献DOI怎么找? 1522781
邀请新用户注册赠送积分活动 706258
科研通“疑难数据库(出版商)”最低求助积分说明 703339