Text Mining-Based Suspect Screening for Aquatic Risk Assessment in the Big Data Era: Event-Driven Taxonomy Links Chemical Exposures and Hazards

嫌疑犯 计算机科学 元数据 大数据 仿形(计算机编程) 事件(粒子物理) 风险评估 环境科学 数据科学 风险分析(工程) 数据挖掘 业务 心理学 计算机安全 万维网 物理 操作系统 犯罪学 量子力学
作者
Fei Cheng,Jiehui Huang,Huizhen Li,Beate I. Escher,Yujun Tong,Maria König,Dali Wang,Fan Wu,Zhiqiang Yu,Bryan W. Brooks,Jing You
出处
期刊:Environmental Science and Technology Letters [American Chemical Society]
卷期号:10 (11): 1004-1010 被引量:9
标识
DOI:10.1021/acs.estlett.3c00250
摘要

To improve the accuracy of mixture risk assessment, researchers are employing suspect analysis with expanded lists of contaminants in addition to conventional target lists. However, there are some inherent challenges for these instrument-based analyses, including subjective selection of suspect contaminants, no information for chemical bioactivity, requirements for costly verification, and limited regional coverage. As a supplementary approach, we propose a data-driven suspect screening and risk assessment method informed by mining big data from high-throughput screening bioassay platforms and the refereed literature. The Pearl River Delta (PRD) with main event drivers of arylhydrocarbon receptor (AhR) and oxidative stress (ARE) response was examined. Bioactivity concentrations were collected from the CompTox Chemicals Dashboard, which contained more than 900 000 substances. In addition, exposure metadata from 24 986 literature entries for the environmental occurrence and distribution of contaminants in the PRD over the past three decades were mined. Collectively, a regional distribution map of aquatic hazards induced by AhR- and ARE-active compounds was generated, indicating gradients of low to moderate risks. This study specifically reports a novel big data approach for addressing the increasingly common challenge of objectively selecting analytes during suspect screening, which was recently identified as an urgent research question to advance more sustainable environmental quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负责的凌波应助曾耀华采纳,获得30
刚刚
麻瓜完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
颜九伊完成签到 ,获得积分10
2秒前
英姑应助Pawn采纳,获得10
2秒前
Breeze完成签到,获得积分10
2秒前
2秒前
aaa应助Zhou采纳,获得10
3秒前
3秒前
知行者完成签到 ,获得积分10
3秒前
3秒前
zzeru21完成签到,获得积分10
4秒前
4秒前
核桃发布了新的文献求助30
5秒前
5秒前
鸭子发布了新的文献求助10
6秒前
6秒前
小邢完成签到,获得积分10
7秒前
7秒前
TCL完成签到,获得积分10
8秒前
oywc应助felix采纳,获得10
8秒前
十一发布了新的文献求助10
8秒前
9秒前
科研通AI2S应助里大炮采纳,获得10
9秒前
世界尽头完成签到,获得积分10
9秒前
10秒前
Herman发布了新的文献求助10
10秒前
科研通AI5应助RR采纳,获得10
10秒前
10秒前
JamesPei应助kou采纳,获得10
11秒前
科研通AI6应助season采纳,获得30
12秒前
浮游应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
JF123_发布了新的文献求助10
13秒前
CipherSage应助科研通管家采纳,获得30
13秒前
充电宝应助科研通管家采纳,获得30
13秒前
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215597
求助须知:如何正确求助?哪些是违规求助? 4390701
关于积分的说明 13670504
捐赠科研通 4252590
什么是DOI,文献DOI怎么找? 2333220
邀请新用户注册赠送积分活动 1330838
关于科研通互助平台的介绍 1284652