Text Mining-Based Suspect Screening for Aquatic Risk Assessment in the Big Data Era: Event-Driven Taxonomy Links Chemical Exposures and Hazards

嫌疑犯 计算机科学 元数据 大数据 仿形(计算机编程) 事件(粒子物理) 风险评估 环境科学 数据科学 风险分析(工程) 数据挖掘 业务 心理学 计算机安全 万维网 物理 犯罪学 量子力学 操作系统
作者
Fei Cheng,Jiehui Huang,Huizhen Li,Beate I. Escher,Yujun Tong,Maria König,Dali Wang,Fan Wu,Zhiqiang Yu,Bryan W. Brooks,Jing You
出处
期刊:Environmental Science and Technology Letters [American Chemical Society]
卷期号:10 (11): 1004-1010 被引量:6
标识
DOI:10.1021/acs.estlett.3c00250
摘要

To improve the accuracy of mixture risk assessment, researchers are employing suspect analysis with expanded lists of contaminants in addition to conventional target lists. However, there are some inherent challenges for these instrument-based analyses, including subjective selection of suspect contaminants, no information for chemical bioactivity, requirements for costly verification, and limited regional coverage. As a supplementary approach, we propose a data-driven suspect screening and risk assessment method informed by mining big data from high-throughput screening bioassay platforms and the refereed literature. The Pearl River Delta (PRD) with main event drivers of arylhydrocarbon receptor (AhR) and oxidative stress (ARE) response was examined. Bioactivity concentrations were collected from the CompTox Chemicals Dashboard, which contained more than 900 000 substances. In addition, exposure metadata from 24 986 literature entries for the environmental occurrence and distribution of contaminants in the PRD over the past three decades were mined. Collectively, a regional distribution map of aquatic hazards induced by AhR- and ARE-active compounds was generated, indicating gradients of low to moderate risks. This study specifically reports a novel big data approach for addressing the increasingly common challenge of objectively selecting analytes during suspect screening, which was recently identified as an urgent research question to advance more sustainable environmental quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
神勇馒头完成签到,获得积分10
4秒前
cccccl发布了新的文献求助10
5秒前
自觉妖妖发布了新的文献求助10
5秒前
5秒前
阿德里亚诺完成签到,获得积分10
6秒前
在水一方应助酷炫迎波采纳,获得10
8秒前
英姑应助吴亦凡女朋友采纳,获得10
8秒前
乐乐应助壹君采纳,获得10
8秒前
王子安应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
研友_VZG7GZ应助lzx采纳,获得10
10秒前
NexusExplorer应助678采纳,获得10
10秒前
自然秋柳完成签到 ,获得积分10
10秒前
汉堡包应助迷l采纳,获得10
14秒前
ccer发布了新的文献求助10
14秒前
seven发布了新的文献求助10
15秒前
科目三应助678采纳,获得10
17秒前
18秒前
18秒前
19秒前
Christina完成签到,获得积分10
20秒前
abocide完成签到,获得积分10
20秒前
斯文败类应助壮观的向雁采纳,获得10
21秒前
田様应助克罗地亚哇咔咔采纳,获得10
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999444
求助须知:如何正确求助?哪些是违规求助? 3538780
关于积分的说明 11275184
捐赠科研通 3277604
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883977
科研通“疑难数据库(出版商)”最低求助积分说明 810111