吸附
朗缪尔吸附模型
复合数
蒙脱石
材料科学
活性炭
纳米复合材料
水溶液中的金属离子
壳聚糖
化学工程
解吸
废水
化学
复合材料
金属
有机化学
废物管理
冶金
工程类
作者
Ibrahim Hotan Alsohaimi,Mosaed S. Alhumaimess,Hassan M.A. Hassan,Mohamed Reda,Abdullah M. Aldawsari,Qiao Chen,Mohammed Abdo Kariri
出处
期刊:Polymers
[MDPI AG]
日期:2023-05-05
卷期号:15 (9): 2188-2188
被引量:7
标识
DOI:10.3390/polym15092188
摘要
A simple approach for synthesizing a highly adsorbent composite was described for the uptake of heavy metal ions from wastewater. A simple approach for synthesizing a highly adsorbent composite was also described for the elimination of heavy metal ions from contaminated water. The nanocomposite was synthesized via a polymer grafting of chitosan on the activated carbon surface, followed by a stacking process with the layers of montmorillonite clay. The spectroscopic analyses were exploited to confirm the composite structure of the prepared materials. Various adsorption parameters, such as pH, initial concentration, and adsorption time, were assessed. The results showed that the adsorption capacity of the composite for Pb2+ ions increased as the pH increased until it reached pH 5.5. The maximum adsorption capacity was observed at an initial Pb2+ level of 20 mg/L and a contact time of 150 min. Kinetic models were evaluated, and the pseudo second-order model showed the best match. The adsorption isotherm data were processed by fitting the model with different isotherm behaviors, and the Langmuir isotherm was found to be the most suitable for the system. The maximum adsorption capacity for Pb2+ ion on the MMT/CS/AC composite was found to be 50 mg/g at pH 5.5. Furthermore, the composite maintained a high adsorption capability of 85% for five adsorption-desorption cycles. Overall, this composite is envisioned as an addition to the market of wastewater remediation technology due to its chemical structure, which provides influential functional groups for wastewater treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI