血红蛋白
血红蛋白变体
医学
血红蛋白电泳
疾病
血红蛋白A2
重症监护医学
病理
内科学
作者
Emily Franco,Kristine Karkoska,Patrick T. McGann
标识
DOI:10.1016/j.bcmd.2023.102758
摘要
The genetic regulation of hemoglobin is complex and there are a number of genetic abnormalities that result in clinically important hemoglobin disorders. Here, we review the molecular pathophysiology of hemoglobin disorders and review both old and new methods of diagnosing these disorders. Timely diagnosis of hemoglobinopathies in infants is essential to coordinate optimal life-saving interventions, and accurate identification of carriers of deleterious mutations allows for genetic counseling and informed family planning. The initial laboratory workup of inherited disorders of hemoglobin should include a complete blood count (CBC) and peripheral blood smear, followed by carefully selected tests based on clinical suspicion and available methodology. We discuss the utility and limitations of the various methodologies to fractionate hemoglobin, including cellulose acetate and citrate agar hemoglobin electrophoresis, isoelectric focusing, high-resolution high-performance liquid chromatography, and capillary zone electrophoresis. Recognizing that most of the global burden of hemoglobin disorders exists in low- and middle-income countries, we review the increasingly available array of point-of-care-tests (POCT), which have an increasingly important role in expanding early diagnosis programs to address the global burden of sickle cell disease, including Sickle SCAN, HemoTypeSC, Gazelle Hb Variant, and Smart LifeLC. A comprehensive understanding of the molecular pathophysiology of hemoglobin and the globin genes, as well as a clear understanding of the utility and limitations of currently available diagnostic tests, is essential in reducing global disease burden.
科研通智能强力驱动
Strongly Powered by AbleSci AI