Diagnosis and classification of Parkinson's disease using ensemble learning and 1D-PDCovNN

人工智能 脑电图 模式识别(心理学) 计算机科学 分类器(UML) 特征提取 特征选择 集成学习 帕金森病 机器学习 语音识别 疾病 神经科学 医学 心理学 病理
作者
Majid Nour,Ümit Şentürk,Kemal Polat
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:161: 107031-107031 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107031
摘要

In this paper, we proposed a novel approach to diagnose and classify Parkinson's Disease (PD) using ensemble learning and 1D-PDCovNN, a novel deep learning technique. PD is a neurodegenerative disorder; early detection and correct classification are essential for better disease management. The primary aim of this study is to develop a robust approach to diagnosing and classifying PD using EEG signals. As the dataset, we have used the San Diego Resting State EEG dataset to evaluate our proposed method. The proposed method mainly consists of three stages. In the first stage, the Independent Component Analysis (ICA) method has been used as the pre-processing method to filter out the blink noises from the EEG signals. Also, the effect of the band showing motor cortex activity in the 7–30 Hz frequency band of EEG signals in diagnosing and classifying Parkinson's disease from EEG signals has been investigated. In the second stage, the Common Spatial Pattern (CSP) method has been used as the feature extraction to extract useful information from EEG signals. Finally, an ensemble learning approach, Dynamic Classifier Selection (DCS) in Modified Local Accuracy (MLA), has been employed in the third stage, consisting of seven different classifiers. As the classifier method, DCS in MLA, XGBoost, and 1D-PDCovNN classifier has been used to classify the EEG signals as the PD and healthy control (HC). We first used dynamic classifier selection to diagnose and classify Parkinson's disease (PD) from EEG signals, and promising results have been obtained. The performance of the proposed approach has been evaluated using the classification accuracy, F-1 score, kappa score, Jaccard score, ROC curve, recall, and precision values in the classification of PD with the proposed models. In the classification of PD, the combination of DCS in MLA achieved an accuracy of 99,31%. The results of this study demonstrate that the proposed approach can be used as a reliable tool for early diagnosis and classification of PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xzy998应助念65采纳,获得10
1秒前
姜岛完成签到,获得积分10
1秒前
会思考的狐狸完成签到 ,获得积分10
1秒前
1秒前
讨厌科研完成签到,获得积分10
2秒前
3秒前
微笑襄完成签到 ,获得积分10
4秒前
领导范儿应助kiki采纳,获得10
4秒前
传奇3应助水木年华采纳,获得10
4秒前
含糊的立轩完成签到,获得积分10
5秒前
marvelM完成签到,获得积分10
6秒前
6秒前
6秒前
球球发布了新的文献求助10
6秒前
6秒前
开心夏云完成签到,获得积分10
7秒前
7秒前
Junlei完成签到,获得积分10
7秒前
8秒前
万默发布了新的文献求助10
8秒前
菘蓝泽蓼完成签到,获得积分10
9秒前
9秒前
simon_chou完成签到,获得积分10
9秒前
TracyGuo发布了新的文献求助10
9秒前
烟花应助鱼儿会飞采纳,获得10
10秒前
CipherSage应助芋泥泥泥采纳,获得10
11秒前
Junjie发布了新的文献求助10
11秒前
ss发布了新的文献求助10
12秒前
huyz发布了新的文献求助10
12秒前
CodeCraft应助橘子果酱采纳,获得10
12秒前
12秒前
SSY发布了新的文献求助10
13秒前
13秒前
13秒前
布拉德皮特厚完成签到,获得积分10
13秒前
ZHX完成签到,获得积分10
14秒前
晨心完成签到,获得积分10
14秒前
上好佳完成签到,获得积分10
14秒前
多情方盒完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016558
求助须知:如何正确求助?哪些是违规求助? 3556732
关于积分的说明 11322479
捐赠科研通 3289455
什么是DOI,文献DOI怎么找? 1812490
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812074