Diagnosis and classification of Parkinson's disease using ensemble learning and 1D-PDCovNN

人工智能 脑电图 模式识别(心理学) 计算机科学 分类器(UML) 特征提取 特征选择 集成学习 帕金森病 机器学习 语音识别 疾病 神经科学 医学 心理学 病理
作者
Majid Nour,Ümit Şentürk,Kemal Polat
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:161: 107031-107031 被引量:30
标识
DOI:10.1016/j.compbiomed.2023.107031
摘要

In this paper, we proposed a novel approach to diagnose and classify Parkinson's Disease (PD) using ensemble learning and 1D-PDCovNN, a novel deep learning technique. PD is a neurodegenerative disorder; early detection and correct classification are essential for better disease management. The primary aim of this study is to develop a robust approach to diagnosing and classifying PD using EEG signals. As the dataset, we have used the San Diego Resting State EEG dataset to evaluate our proposed method. The proposed method mainly consists of three stages. In the first stage, the Independent Component Analysis (ICA) method has been used as the pre-processing method to filter out the blink noises from the EEG signals. Also, the effect of the band showing motor cortex activity in the 7–30 Hz frequency band of EEG signals in diagnosing and classifying Parkinson's disease from EEG signals has been investigated. In the second stage, the Common Spatial Pattern (CSP) method has been used as the feature extraction to extract useful information from EEG signals. Finally, an ensemble learning approach, Dynamic Classifier Selection (DCS) in Modified Local Accuracy (MLA), has been employed in the third stage, consisting of seven different classifiers. As the classifier method, DCS in MLA, XGBoost, and 1D-PDCovNN classifier has been used to classify the EEG signals as the PD and healthy control (HC). We first used dynamic classifier selection to diagnose and classify Parkinson's disease (PD) from EEG signals, and promising results have been obtained. The performance of the proposed approach has been evaluated using the classification accuracy, F-1 score, kappa score, Jaccard score, ROC curve, recall, and precision values in the classification of PD with the proposed models. In the classification of PD, the combination of DCS in MLA achieved an accuracy of 99,31%. The results of this study demonstrate that the proposed approach can be used as a reliable tool for early diagnosis and classification of PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏cai发布了新的文献求助30
刚刚
刚刚
1秒前
mnm发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
无极微光发布了新的文献求助20
3秒前
3秒前
4秒前
badjack发布了新的文献求助20
4秒前
ZunyeLiu发布了新的文献求助10
4秒前
5秒前
乔佳怡完成签到,获得积分10
5秒前
Rachel发布了新的文献求助10
5秒前
xin发布了新的文献求助10
6秒前
彭于晏应助mnm采纳,获得10
7秒前
乔达摩完成签到 ,获得积分0
8秒前
CipherSage应助dw采纳,获得10
8秒前
9秒前
10秒前
陈瑞完成签到,获得积分10
10秒前
123发布了新的文献求助10
11秒前
12秒前
12秒前
江睦月完成签到,获得积分10
13秒前
13秒前
Orange应助Iris采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
winwin_chan完成签到,获得积分10
14秒前
15秒前
15秒前
东方元语应助无极微光采纳,获得20
16秒前
16秒前
Shenliheng发布了新的文献求助10
17秒前
Zhe完成签到,获得积分10
18秒前
Rachel完成签到,获得积分10
18秒前
zhongxia完成签到 ,获得积分10
18秒前
自律的小钰完成签到,获得积分10
19秒前
高高发布了新的文献求助10
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687