Diagnosis and classification of Parkinson's disease using ensemble learning and 1D-PDCovNN

人工智能 脑电图 模式识别(心理学) 计算机科学 分类器(UML) 特征提取 特征选择 集成学习 帕金森病 机器学习 语音识别 疾病 神经科学 医学 心理学 病理
作者
Majid Nour,Ümit Şentürk,Kemal Polat
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:161: 107031-107031 被引量:28
标识
DOI:10.1016/j.compbiomed.2023.107031
摘要

In this paper, we proposed a novel approach to diagnose and classify Parkinson's Disease (PD) using ensemble learning and 1D-PDCovNN, a novel deep learning technique. PD is a neurodegenerative disorder; early detection and correct classification are essential for better disease management. The primary aim of this study is to develop a robust approach to diagnosing and classifying PD using EEG signals. As the dataset, we have used the San Diego Resting State EEG dataset to evaluate our proposed method. The proposed method mainly consists of three stages. In the first stage, the Independent Component Analysis (ICA) method has been used as the pre-processing method to filter out the blink noises from the EEG signals. Also, the effect of the band showing motor cortex activity in the 7–30 Hz frequency band of EEG signals in diagnosing and classifying Parkinson's disease from EEG signals has been investigated. In the second stage, the Common Spatial Pattern (CSP) method has been used as the feature extraction to extract useful information from EEG signals. Finally, an ensemble learning approach, Dynamic Classifier Selection (DCS) in Modified Local Accuracy (MLA), has been employed in the third stage, consisting of seven different classifiers. As the classifier method, DCS in MLA, XGBoost, and 1D-PDCovNN classifier has been used to classify the EEG signals as the PD and healthy control (HC). We first used dynamic classifier selection to diagnose and classify Parkinson's disease (PD) from EEG signals, and promising results have been obtained. The performance of the proposed approach has been evaluated using the classification accuracy, F-1 score, kappa score, Jaccard score, ROC curve, recall, and precision values in the classification of PD with the proposed models. In the classification of PD, the combination of DCS in MLA achieved an accuracy of 99,31%. The results of this study demonstrate that the proposed approach can be used as a reliable tool for early diagnosis and classification of PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Denmark发布了新的文献求助20
2秒前
愉快的哈密瓜完成签到,获得积分10
3秒前
4秒前
归尘发布了新的文献求助10
8秒前
不是大闸谢完成签到,获得积分20
8秒前
irvinzp完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
Sicecream完成签到,获得积分10
10秒前
哈哈完成签到 ,获得积分10
10秒前
尔尔发布了新的文献求助10
11秒前
桃酥完成签到,获得积分10
12秒前
12秒前
大佛完成签到,获得积分10
12秒前
13秒前
bkagyin应助weqewqweqw采纳,获得10
15秒前
迷路的曼凡完成签到,获得积分10
16秒前
manggogo完成签到,获得积分10
16秒前
17秒前
活泼的飞鸟完成签到,获得积分10
25秒前
26秒前
26秒前
英姑应助不是大闸谢采纳,获得10
26秒前
xue完成签到 ,获得积分10
28秒前
今后应助奋斗绝施采纳,获得10
28秒前
29秒前
30秒前
执着依秋完成签到,获得积分10
30秒前
31秒前
Bolin发布了新的文献求助10
31秒前
不亦乐乎完成签到,获得积分10
31秒前
31秒前
和谐惜珊发布了新的文献求助10
32秒前
石贵远完成签到 ,获得积分10
33秒前
33秒前
33秒前
CC完成签到 ,获得积分10
34秒前
lilili发布了新的文献求助10
35秒前
赵云江完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883441
求助须知:如何正确求助?哪些是违规求助? 4168954
关于积分的说明 12935592
捐赠科研通 3929273
什么是DOI,文献DOI怎么找? 2156010
邀请新用户注册赠送积分活动 1174404
关于科研通互助平台的介绍 1079144