Reprogrammable acoustic metamaterials for multiband energy harvesting

超材料 声学 压电 声共振 能量收集 共振(粒子物理) 材料科学 声波 物理 能量(信号处理) 谐振器 光电子学 量子力学 粒子物理学
作者
Yuanyuan Liu,Daoli Zhao,Zhimiao Yan,Weipeng Sun,Pengcheng Guo,Ting Tan
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:288: 116207-116207 被引量:26
标识
DOI:10.1016/j.engstruct.2023.116207
摘要

Acoustic metamaterials are artificial materials that possess the remarkable ability to control and manipulate acoustic waves, which makes them ideal for acoustic energy harvesting. However, the current limitation is that these metamaterials can only effectively harvest energy within a narrow band defined by a single defect mode. To overcome this challenge, a new type of reprogrammable acoustic metamaterial has been developed. This metamaterial incorporates local resonance and magnetic modulation of the structure to enable multiband piezoelectric energy harvesting. The design of triple-band energy localization and regulation involves the utilization of the Bloch theorem and magnetic dipole model. The Bloch theorem is utilized to investigate the propagation of waves within acoustic metamaterials. Electromechanical conversion is achieved through the direct piezoelectric effect of piezoelectric ceramic. Pressure acoustics, solid mechanics, electrostatics and electrical circuit modules are employed to simulate the coupling effects among sound, mechanical and electrostatic fields for acoustic energy harvesting. The magnetic dipole model is employed to determine the magnetic force between the carbon steel cylinders of reprogrammable acoustic metamaterials and the permanent magnet used for magnetic modulation. The structural resonance of the acoustic metamaterials is in charge of band I from 35 Hz to 60 Hz. The local resonance is in charge of band II from 1650 Hz to 2050 Hz. The synergy between the structural resonance and local resonance contributes to band III from 4800 Hz to 5700 Hz with dominance of the structural resonance. The harvested powers of the acoustic metamaterials are 0.10 mW, 0.23 mW and 0.13 mW for different bands. By utilizing reprogrammable magnetic modulation on the structural resonances, the harvested powers for band I and band III experience remarkable enhancements of 655% and 214%, respectively. This breakthrough has the potential to revolutionize the field of acoustic energy harvesting, enabling the harvesting of energy across a wider range of frequencies. We anticipate that the implementation of the multiband acoustic metamaterial energy harvesting wall will expedite the growth of advanced technologies pertaining to acoustic energy localization and self-powered sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
鸣笛应助zying采纳,获得20
3秒前
zhhhh03完成签到,获得积分10
3秒前
Unicorn完成签到 ,获得积分10
4秒前
zihanwang应助shifeng采纳,获得10
4秒前
称心冬云发布了新的文献求助10
5秒前
lucas发布了新的文献求助10
5秒前
7秒前
萤火之森发布了新的文献求助10
7秒前
工商第一发布了新的文献求助10
7秒前
8秒前
可爱的函函应助笙默0329采纳,获得10
8秒前
siriuslee99完成签到,获得积分10
9秒前
JQM完成签到,获得积分10
11秒前
wanci应助5eV采纳,获得10
11秒前
安生完成签到,获得积分10
14秒前
14秒前
愤怒的念烟完成签到,获得积分20
14秒前
14秒前
Stormi发布了新的文献求助10
14秒前
脑洞疼应助彪壮的机器猫采纳,获得10
15秒前
尽如给尽如的求助进行了留言
16秒前
lumia完成签到,获得积分20
16秒前
Vi完成签到,获得积分10
17秒前
高贵灵槐完成签到 ,获得积分10
17秒前
琳琳琳琳565完成签到,获得积分10
18秒前
19秒前
19秒前
热心市民应助verbal2005采纳,获得10
20秒前
临江仙完成签到,获得积分10
21秒前
yuaasusanaann发布了新的文献求助30
21秒前
断章完成签到 ,获得积分10
22秒前
22秒前
不羁的红枫叶完成签到 ,获得积分10
22秒前
田様应助称心冬云采纳,获得10
23秒前
23秒前
24秒前
工商第一发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014