Genetic analysis of cuproptosis subtypes and immunological features in severe influenza

免疫系统 基因 免疫学 生物 基因表达 列线图 计算生物学 遗传学 医学 肿瘤科
作者
Liang Chen,Jie Hua,Xiaopu He
出处
期刊:Microbial Pathogenesis [Elsevier BV]
卷期号:180: 106162-106162 被引量:1
标识
DOI:10.1016/j.micpath.2023.106162
摘要

The mechanisms regulating cuproptosis in severe influenza are still unknown. We aimed to identify the molecular subtypes of cuproptosis and immunological characteristics associated with severe influenza in patients requiring invasive mechanical ventilation (IMV). The expression of cuproptosis modulatory factors and immunological characteristics of these patients were analyzed using the public datasets (GSE101702, GSE21802, and GSE111368) from the Gene Expression Omnibus (GEO). Seven cuproptotic-associated genes (ATP7B, ATP7A, FDX1, LIAS, DLD, MTF1, DBT) related to active immune responses were identified in patients suffering from severe and non-severe influenza and two cuproptosis-associated molecular subtypes were discovered in severe influenza patients. Singe-set gene set expression analysis (SsGSEA) indicated that compared with subtype 2, subtype 1 was characterized by reduced adaptive cellular immune responses and increased neutrophil activation. Gene set variation assessment revealed that cluster-specific differentially expressed genes (DEGs) in subtype 1 were involved in autophagy, apoptosis, oxidative phosphorylation, and T cell, immune, and inflammatory responses, amongst others. The random forest (RF) model revealed the most differentiating efficiency with relatively small residual and root mean square error and an increased area under the curve value (AUC = 0.857). Lastly, a five-gene-based RF model (CD247, GADD45A, KIF1B, LIN7A, HLA_DPA1) was established, which showed satisfactory efficiency in the test datasets GSE111368 (AUC = 0.819). Nomogram calibration and decision curve analysis demonstrated its accuracy for the prediction of severe influenza. This study suggests that cuproptosis might be associated with the immunopathology of severe influenza. Additionally, an efficient model for the prediction of cuproptosis subtypes was developed which will contribute to the prevention and treatment of severe influenza patients needing IMV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15122303完成签到,获得积分10
7秒前
7秒前
Nicole完成签到 ,获得积分10
8秒前
独特纸飞机完成签到 ,获得积分10
10秒前
尘逸完成签到 ,获得积分10
12秒前
14秒前
沙子完成签到 ,获得积分0
15秒前
MOMO完成签到 ,获得积分10
16秒前
SY15732023811完成签到 ,获得积分10
17秒前
nove999完成签到 ,获得积分10
17秒前
hfguwn发布了新的文献求助10
18秒前
迷路冰颜完成签到 ,获得积分10
19秒前
23秒前
油麦菜完成签到 ,获得积分10
23秒前
楠D完成签到,获得积分10
23秒前
HCLonely完成签到,获得积分0
23秒前
柠檬01210完成签到,获得积分10
23秒前
DIngqin完成签到,获得积分10
24秒前
LJ_2完成签到 ,获得积分10
25秒前
hfguwn完成签到,获得积分20
26秒前
cici完成签到 ,获得积分10
28秒前
29秒前
Anonymous完成签到,获得积分10
32秒前
32秒前
anhuiwsy完成签到 ,获得积分10
32秒前
Xixi_yuan完成签到,获得积分10
35秒前
喜悦的飞飞完成签到,获得积分10
36秒前
李健应助吹梦西洲采纳,获得10
36秒前
Simple完成签到,获得积分10
37秒前
健壮的涑完成签到 ,获得积分10
39秒前
dbdxyty完成签到,获得积分10
40秒前
hyw完成签到 ,获得积分10
41秒前
美合完成签到 ,获得积分10
42秒前
sbw发布了新的文献求助30
44秒前
烟花应助费老五采纳,获得10
47秒前
48秒前
50秒前
ryd完成签到,获得积分10
50秒前
拓跋傲薇完成签到,获得积分10
52秒前
禁止吃桃完成签到 ,获得积分10
52秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736760
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020365
捐赠科研通 2997407
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749656