Efficient dual ADMMs for sparse compressive sensing MRI reconstruction

压缩传感 迭代重建 小波 数学优化 计算机科学 正规化(语言学) 算法 半定规划 图像质量 凸优化 数学 正多边形 人工智能 图像(数学) 几何学
作者
Yanyun Ding,Peili Li,Yunhai Xiao,Haibin Zhang
出处
期刊:Mathematical Methods of Operations Research [Springer Science+Business Media]
卷期号:97 (2): 207-231 被引量:1
标识
DOI:10.1007/s00186-023-00811-6
摘要

Magnetic Resonance Imaging (MRI) is a kind of medical imaging technology used for diagnostic imaging of diseases, but its image quality may be suffered by the long acquisition time. The compressive sensing (CS) based strategy may decrease the reconstruction time greatly, but it needs efficient reconstruction algorithms to produce high-quality and reliable images. This paper focuses on the algorithmic improvement for the sparse reconstruction of CS-MRI, especially considering a non-smooth convex minimization problem which is composed of the sum of a total variation regularization term and a $$\ell _1$$ -norm term of the wavelet transformation. The partly motivation of targeting the dual problem is that the dual variables are involved in relatively low-dimensional subspace. Instead of solving the primal model as usual, we turn our attention to its associated dual model composed of three variable blocks and two separable non-smooth function blocks. However, the directly extended alternating direction method of multipliers (ADMM) must be avoided because it may be divergent, although it usually performs well numerically. In order to solve the problem, we employ a symmetric Gauss–Seidel (sGS) technique based ADMM. Compared with the directly extended ADMM, this method only needs one additional iteration, but its convergence can be guaranteed theoretically. Besides, we also propose a generalized variant of ADMM because this method has been illustrated to be efficient for solving semidefinite programming in the past few years. Finally, we do extensive experiments on MRI reconstruction using some simulated and real MRI images under different sampling patterns and ratios. The numerical results demonstrate that the proposed algorithms significantly achieve high reconstruction accuracies with fast computational speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
淡淡夕阳发布了新的文献求助10
3秒前
万能图书馆应助JYLLLLLL采纳,获得10
3秒前
3秒前
卷粉儿发布了新的文献求助80
6秒前
初衷未央发布了新的文献求助10
9秒前
wangwei完成签到 ,获得积分10
9秒前
burningzmz完成签到,获得积分10
11秒前
郭团团发布了新的文献求助10
11秒前
DW应助kiwi采纳,获得200
12秒前
Qls完成签到,获得积分10
12秒前
13秒前
sun完成签到,获得积分20
14秒前
burningzmz发布了新的文献求助10
15秒前
123完成签到,获得积分10
16秒前
Qls发布了新的文献求助10
16秒前
17秒前
白杨木影子被拉长完成签到,获得积分10
17秒前
科研通AI2S应助宝宝言兼采纳,获得10
18秒前
清脆大树发布了新的文献求助30
18秒前
fuje发布了新的文献求助10
19秒前
theo完成签到 ,获得积分10
19秒前
二世小卒完成签到 ,获得积分0
21秒前
iNk应助你怎么睡得着觉采纳,获得20
22秒前
22秒前
22秒前
23秒前
zzz完成签到,获得积分10
24秒前
24秒前
JAJ发布了新的文献求助10
24秒前
25秒前
努力搞科研完成签到,获得积分10
26秒前
学术小白发布了新的文献求助10
27秒前
小透明发布了新的文献求助10
28秒前
fossette发布了新的文献求助10
28秒前
PhH发布了新的文献求助10
29秒前
zyyyy完成签到,获得积分10
30秒前
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966458
求助须知:如何正确求助?哪些是违规求助? 3511927
关于积分的说明 11160884
捐赠科研通 3246684
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403