Efficient dual ADMMs for sparse compressive sensing MRI reconstruction

压缩传感 迭代重建 小波 数学优化 计算机科学 正规化(语言学) 算法 半定规划 图像质量 凸优化 数学 正多边形 人工智能 图像(数学) 几何学
作者
Yanyun Ding,Peili Li,Yunhai Xiao,Haibin Zhang
出处
期刊:Mathematical Methods of Operations Research [Springer Nature]
卷期号:97 (2): 207-231 被引量:1
标识
DOI:10.1007/s00186-023-00811-6
摘要

Magnetic Resonance Imaging (MRI) is a kind of medical imaging technology used for diagnostic imaging of diseases, but its image quality may be suffered by the long acquisition time. The compressive sensing (CS) based strategy may decrease the reconstruction time greatly, but it needs efficient reconstruction algorithms to produce high-quality and reliable images. This paper focuses on the algorithmic improvement for the sparse reconstruction of CS-MRI, especially considering a non-smooth convex minimization problem which is composed of the sum of a total variation regularization term and a $$\ell _1$$ -norm term of the wavelet transformation. The partly motivation of targeting the dual problem is that the dual variables are involved in relatively low-dimensional subspace. Instead of solving the primal model as usual, we turn our attention to its associated dual model composed of three variable blocks and two separable non-smooth function blocks. However, the directly extended alternating direction method of multipliers (ADMM) must be avoided because it may be divergent, although it usually performs well numerically. In order to solve the problem, we employ a symmetric Gauss–Seidel (sGS) technique based ADMM. Compared with the directly extended ADMM, this method only needs one additional iteration, but its convergence can be guaranteed theoretically. Besides, we also propose a generalized variant of ADMM because this method has been illustrated to be efficient for solving semidefinite programming in the past few years. Finally, we do extensive experiments on MRI reconstruction using some simulated and real MRI images under different sampling patterns and ratios. The numerical results demonstrate that the proposed algorithms significantly achieve high reconstruction accuracies with fast computational speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小野狼发布了新的文献求助10
刚刚
戒不掉的烟完成签到,获得积分10
1秒前
妩媚的尔阳完成签到,获得积分10
1秒前
1秒前
ng完成签到,获得积分10
2秒前
小超人发布了新的文献求助10
3秒前
J卡卡K完成签到 ,获得积分10
4秒前
德鲁大叔完成签到,获得积分10
5秒前
CSUST科研一哥应助Weiyu采纳,获得20
6秒前
难过大神完成签到,获得积分10
6秒前
夕荀发布了新的文献求助10
6秒前
科研通AI2S应助77采纳,获得10
7秒前
不倦应助感动语蝶采纳,获得10
11秒前
林钟完成签到,获得积分10
12秒前
12秒前
Hayate应助Sky我的小清新采纳,获得10
15秒前
花花发布了新的文献求助50
15秒前
翩璸完成签到 ,获得积分10
17秒前
万能图书馆应助数学王子采纳,获得200
17秒前
18秒前
18秒前
21秒前
张微浪发布了新的文献求助10
23秒前
冰姗完成签到,获得积分10
23秒前
大蚂蚁完成签到,获得积分10
25秒前
人间五十年完成签到 ,获得积分10
26秒前
橘朵方差发布了新的文献求助10
26秒前
CipherSage应助周其全采纳,获得30
28秒前
28秒前
30秒前
帅子完成签到,获得积分0
30秒前
33秒前
34秒前
35秒前
35秒前
子车茗应助小胖纸采纳,获得10
35秒前
37秒前
孙先生发布了新的文献求助10
38秒前
38秒前
乐生发布了新的文献求助10
39秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243037
求助须知:如何正确求助?哪些是违规求助? 2887097
关于积分的说明 8246502
捐赠科研通 2555694
什么是DOI,文献DOI怎么找? 1383806
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625631