Multimodal adversarial representation learning for breast cancer prognosis prediction

对抗制 计算机科学 代表(政治) 人工智能 特征学习 机器学习 乳腺癌 医学 癌症 政治学 政治 内科学 法学
作者
Xiuquan Du,Yuefan Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:157: 106765-106765 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.106765
摘要

With the increasing incidence of breast cancer, accurate prognosis prediction of breast cancer patients is a key issue in current cancer research, and it is also of great significance for patients' psychological rehabilitation and assisting clinical decision-making. Many studies that integrate data from different heterogeneous modalities such as gene expression profile, clinical data, and copy number alteration, have achieved greater success than those with only one modality in prognostic prediction. However, many of these approaches that exist fail to dramatically reduce the modality gap by aligning multimodal distributions. Therefore, it is crucial to develop a method that fully considers a modality-invariant embedding space to effectively integrate multimodal data. In this study, to reduce the modality gap, we propose a multimodal data adversarial representation framework (MDAR) to reduce the modal heterogeneity by translating source modalities into distributions for the target modality. Additionally, we apply reconstruction and classification losses to embedding space to further constrain it. Then, we design a multi-scale bilinear convolutional neural network (MS-B-CNN) for uni-modality to improve the feature expression ability. In addition, the embedding space generates predictions as stacked feature inputs to the extremely randomized trees classifier. With 10-fold cross-validation, our results show that the proposed adversarial representation learning improves prognostic performance. A comparative study of this method and other existing methods on the METABRIC (1980 patients) dataset showed that Matthews correlation coefficient (Mcc) was significantly enhanced by 7.4% in the prognosis prediction of breast cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干衬衫完成签到 ,获得积分10
刚刚
刚刚
刚刚
sxy完成签到,获得积分10
1秒前
1秒前
靓仔发布了新的文献求助20
2秒前
2秒前
共享精神应助朴实问筠采纳,获得10
2秒前
清爽文博发布了新的文献求助10
2秒前
幸福大白发布了新的文献求助10
2秒前
嗒帅应助mimimi采纳,获得10
2秒前
3秒前
4秒前
Y.完成签到,获得积分10
4秒前
Hello应助二十七垚采纳,获得10
4秒前
left_right发布了新的文献求助10
4秒前
细腻海蓝发布了新的文献求助10
5秒前
5秒前
cocolu应助xiaofeng采纳,获得10
6秒前
6秒前
李昂臻发布了新的文献求助10
6秒前
独特的新竹完成签到 ,获得积分10
7秒前
7秒前
鸡蛋灌饼完成签到,获得积分10
9秒前
crk发布了新的文献求助10
9秒前
ii发布了新的文献求助10
9秒前
彭于晏应助TGU的小马同学采纳,获得10
9秒前
123321发布了新的文献求助10
11秒前
混子始祖发布了新的文献求助30
11秒前
left_right完成签到,获得积分10
11秒前
12秒前
777发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
15秒前
15秒前
xiaofeng完成签到,获得积分10
15秒前
16秒前
哒哒哒发布了新的文献求助10
16秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218457
求助须知:如何正确求助?哪些是违规求助? 2867704
关于积分的说明 8157719
捐赠科研通 2534685
什么是DOI,文献DOI怎么找? 1367140
科研通“疑难数据库(出版商)”最低求助积分说明 644934
邀请新用户注册赠送积分活动 618123