Multimodal adversarial representation learning for breast cancer prognosis prediction

对抗制 计算机科学 代表(政治) 人工智能 特征学习 机器学习 乳腺癌 医学 癌症 政治学 政治 内科学 法学
作者
Xiuquan Du,Yuefan Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:157: 106765-106765 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.106765
摘要

With the increasing incidence of breast cancer, accurate prognosis prediction of breast cancer patients is a key issue in current cancer research, and it is also of great significance for patients' psychological rehabilitation and assisting clinical decision-making. Many studies that integrate data from different heterogeneous modalities such as gene expression profile, clinical data, and copy number alteration, have achieved greater success than those with only one modality in prognostic prediction. However, many of these approaches that exist fail to dramatically reduce the modality gap by aligning multimodal distributions. Therefore, it is crucial to develop a method that fully considers a modality-invariant embedding space to effectively integrate multimodal data. In this study, to reduce the modality gap, we propose a multimodal data adversarial representation framework (MDAR) to reduce the modal heterogeneity by translating source modalities into distributions for the target modality. Additionally, we apply reconstruction and classification losses to embedding space to further constrain it. Then, we design a multi-scale bilinear convolutional neural network (MS-B-CNN) for uni-modality to improve the feature expression ability. In addition, the embedding space generates predictions as stacked feature inputs to the extremely randomized trees classifier. With 10-fold cross-validation, our results show that the proposed adversarial representation learning improves prognostic performance. A comparative study of this method and other existing methods on the METABRIC (1980 patients) dataset showed that Matthews correlation coefficient (Mcc) was significantly enhanced by 7.4% in the prognosis prediction of breast cancer patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxd完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
124完成签到,获得积分0
4秒前
Oscillator发布了新的文献求助10
6秒前
yy111发布了新的文献求助10
7秒前
充电宝应助幸运Q采纳,获得30
7秒前
7秒前
所所应助web采纳,获得10
9秒前
9秒前
9秒前
9秒前
虾条完成签到 ,获得积分10
10秒前
任性饼干完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
萌only发布了新的文献求助10
14秒前
14秒前
淡淡友瑶发布了新的文献求助10
14秒前
铃儿响叮当完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
zhh完成签到,获得积分10
16秒前
GT完成签到,获得积分0
17秒前
研友_nPxrVn发布了新的文献求助10
18秒前
19秒前
咻咻发布了新的文献求助10
21秒前
22秒前
蔓越莓完成签到 ,获得积分10
22秒前
22秒前
汉堡包应助淡淡的忆彤采纳,获得10
22秒前
rui发布了新的文献求助10
25秒前
27秒前
文献小甜菜完成签到,获得积分10
27秒前
27秒前
27秒前
Oscillator发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
27秒前
上官若男应助咻咻采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774852
求助须知:如何正确求助?哪些是违规求助? 5620046
关于积分的说明 15436926
捐赠科研通 4907323
什么是DOI,文献DOI怎么找? 2640592
邀请新用户注册赠送积分活动 1588479
关于科研通互助平台的介绍 1543394