亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal adversarial representation learning for breast cancer prognosis prediction

对抗制 计算机科学 代表(政治) 人工智能 特征学习 机器学习 乳腺癌 医学 癌症 政治学 政治 内科学 法学
作者
Xiuquan Du,Yuefan Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:157: 106765-106765 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.106765
摘要

With the increasing incidence of breast cancer, accurate prognosis prediction of breast cancer patients is a key issue in current cancer research, and it is also of great significance for patients' psychological rehabilitation and assisting clinical decision-making. Many studies that integrate data from different heterogeneous modalities such as gene expression profile, clinical data, and copy number alteration, have achieved greater success than those with only one modality in prognostic prediction. However, many of these approaches that exist fail to dramatically reduce the modality gap by aligning multimodal distributions. Therefore, it is crucial to develop a method that fully considers a modality-invariant embedding space to effectively integrate multimodal data. In this study, to reduce the modality gap, we propose a multimodal data adversarial representation framework (MDAR) to reduce the modal heterogeneity by translating source modalities into distributions for the target modality. Additionally, we apply reconstruction and classification losses to embedding space to further constrain it. Then, we design a multi-scale bilinear convolutional neural network (MS-B-CNN) for uni-modality to improve the feature expression ability. In addition, the embedding space generates predictions as stacked feature inputs to the extremely randomized trees classifier. With 10-fold cross-validation, our results show that the proposed adversarial representation learning improves prognostic performance. A comparative study of this method and other existing methods on the METABRIC (1980 patients) dataset showed that Matthews correlation coefficient (Mcc) was significantly enhanced by 7.4% in the prognosis prediction of breast cancer patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
玉米面发布了新的文献求助30
26秒前
28秒前
量子星尘发布了新的文献求助10
29秒前
zoes发布了新的文献求助10
29秒前
33秒前
flyinthesky完成签到,获得积分10
41秒前
Leah_7完成签到,获得积分10
43秒前
HaoZhang完成签到,获得积分10
46秒前
47秒前
风清扬应助HaoZhang采纳,获得30
51秒前
英姑应助movoandy采纳,获得10
57秒前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
1分钟前
1分钟前
yueying完成签到,获得积分10
1分钟前
1分钟前
lijiayi发布了新的文献求助10
1分钟前
酚醛树脂发布了新的文献求助10
1分钟前
玉米面关注了科研通微信公众号
1分钟前
1分钟前
我是老大应助lijiayi采纳,获得10
1分钟前
友好灵阳完成签到 ,获得积分10
1分钟前
玉米面发布了新的文献求助10
1分钟前
酚醛树脂完成签到,获得积分10
1分钟前
包惜筠完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
行悟完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
赘婿应助Michelle采纳,获得10
2分钟前
Kevin完成签到,获得积分10
2分钟前
2分钟前
movoandy发布了新的文献求助10
2分钟前
2分钟前
hourt2395发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509468
求助须知:如何正确求助?哪些是违规求助? 4604372
关于积分的说明 14489671
捐赠科研通 4539142
什么是DOI,文献DOI怎么找? 2487317
邀请新用户注册赠送积分活动 1469759
关于科研通互助平台的介绍 1441996