亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Knowledge Graph Civil Aviation Question Answering Based on Deep Learning

民用航空 计算机科学 图形 航空 答疑 卷积神经网络 判决 人工智能 知识图 深度学习 工程类 理论计算机科学 航空航天工程
作者
Peng Yu,Weiguang Gong,Ziang Bai,Huimin Zhao,Wen Deng
标识
DOI:10.1109/cac57257.2022.10054717
摘要

With the continuous expansion of the scale of civil aviation, the passenger traffic volume of civil aviation has increased year by year, and the demand of passengers for civil aviation travel information has also increased sharply. The traditional manual customer service has problems such as heavy customer service pressure and untimely message response, which can no longer meet the development of modern civil aviation service industry. Therefore, this paper proposes a knowledge graph question answering method for civil aviation based on deep learning, which is used to quickly and accurately obtain the information of civil aviation question and match the question answers. Firstly based on the collected civil aviation data, the method extracts triples based on rules to complete the civil aviation knowledge graph, then the Aho-Corasick(AC)automata is constructed for entity recognition, and Convolutional Neural Network(CNN)is used for classifying user intention. Finally, according to the recognized entities and the results of user intention classification, the question is converted into a query sentence of the knowledge graph, and the answer is returned after querying in the knowledge graph. The experimental results show that the proposed method in this paper can better understand user’s intention and accurately answer the relevant questions compared with the comparative methods, which proves the validity of the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
24秒前
矮小的白猫完成签到,获得积分10
27秒前
32秒前
34秒前
小刘小刘发布了新的文献求助10
38秒前
39秒前
量子星尘发布了新的文献求助10
41秒前
Yuanyuan发布了新的文献求助10
44秒前
47秒前
彭进水完成签到 ,获得积分10
51秒前
情怀应助小刘小刘采纳,获得80
1分钟前
1分钟前
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
JamesPei应助77采纳,获得10
1分钟前
阿K完成签到,获得积分10
1分钟前
sophy发布了新的文献求助20
1分钟前
1分钟前
默己完成签到 ,获得积分10
1分钟前
77发布了新的文献求助10
1分钟前
害羞的高跟鞋完成签到,获得积分20
2分钟前
2分钟前
Yuanyuan发布了新的文献求助10
2分钟前
77完成签到,获得积分10
2分钟前
3分钟前
奋斗的小研完成签到,获得积分10
3分钟前
里昂义务发布了新的文献求助30
3分钟前
3分钟前
Yuanyuan发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI6.1应助毛毛采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
老石完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788771
求助须知:如何正确求助?哪些是违规求助? 5711930
关于积分的说明 15473908
捐赠科研通 4916776
什么是DOI,文献DOI怎么找? 2646575
邀请新用户注册赠送积分活动 1594240
关于科研通互助平台的介绍 1548666