Knowledge Graph Civil Aviation Question Answering Based on Deep Learning

民用航空 计算机科学 图形 航空 答疑 卷积神经网络 判决 人工智能 知识图 深度学习 工程类 理论计算机科学 航空航天工程
作者
Peng Yu,Weiguang Gong,Ziang Bai,Huimin Zhao,Wen Deng
标识
DOI:10.1109/cac57257.2022.10054717
摘要

With the continuous expansion of the scale of civil aviation, the passenger traffic volume of civil aviation has increased year by year, and the demand of passengers for civil aviation travel information has also increased sharply. The traditional manual customer service has problems such as heavy customer service pressure and untimely message response, which can no longer meet the development of modern civil aviation service industry. Therefore, this paper proposes a knowledge graph question answering method for civil aviation based on deep learning, which is used to quickly and accurately obtain the information of civil aviation question and match the question answers. Firstly based on the collected civil aviation data, the method extracts triples based on rules to complete the civil aviation knowledge graph, then the Aho-Corasick(AC)automata is constructed for entity recognition, and Convolutional Neural Network(CNN)is used for classifying user intention. Finally, according to the recognized entities and the results of user intention classification, the question is converted into a query sentence of the knowledge graph, and the answer is returned after querying in the knowledge graph. The experimental results show that the proposed method in this paper can better understand user’s intention and accurately answer the relevant questions compared with the comparative methods, which proves the validity of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康康完成签到,获得积分10
刚刚
Xv完成签到,获得积分0
刚刚
3秒前
3秒前
香蕉觅云应助zfzf0422采纳,获得10
3秒前
4秒前
4秒前
李健应助爱听歌的向日葵采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
烟花应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得80
5秒前
所所应助科研通管家采纳,获得20
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得30
6秒前
婷婷发布了新的文献求助10
6秒前
zzt完成签到,获得积分10
8秒前
张小汉发布了新的文献求助30
9秒前
二十四发布了新的文献求助10
9秒前
赘婿应助junzilan采纳,获得10
9秒前
FashionBoy应助勤恳的雨文采纳,获得10
9秒前
aaa完成签到,获得积分10
10秒前
11秒前
11111完成签到,获得积分20
12秒前
仔wang完成签到,获得积分10
12秒前
14秒前
忘羡222发布了新的文献求助20
14秒前
14秒前
温暖涫完成签到,获得积分10
16秒前
11111发布了新的文献求助10
16秒前
健忘的牛排完成签到,获得积分10
17秒前
wmmm完成签到,获得积分10
17秒前
Akim应助爱吃泡芙采纳,获得10
17秒前
老迟到的书雁完成签到 ,获得积分10
17秒前
17秒前
正经俠发布了新的文献求助10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824