氧化应激
活性氧
脂质过氧化
抗氧化剂
GPX4
化学
生物化学
谷胱甘肽
程序性细胞死亡
药理学
生物
谷胱甘肽过氧化物酶
细胞凋亡
酶
超氧化物歧化酶
作者
Sarah El Hajj,Laetitia Canabady‐Rochelle,Caroline Gaucher
出处
期刊:Molecules
[MDPI AG]
日期:2023-03-14
卷期号:28 (6): 2636-2636
被引量:10
标识
DOI:10.3390/molecules28062636
摘要
Ferroptosis is a type of cell death driven by iron overload and lipid peroxidation. It is considered a key mechanism in the development of various diseases such as atherosclerosis, Alzheimer, diabetes, cancer, and renal failure. The redox status of cells, such as the balance between intracellular oxidants (lipid peroxides, reactive oxygen species, free iron ions) and antioxidants (glutathione, glutathione Peroxidase 4), plays a major role in ferroptosis regulation and constitutes its principal biomarkers. Therefore, the induction and inhibition of ferroptosis are promising strategies for disease treatments such as cancer or neurodegenerative and cardiovascular diseases, respectively. Many drugs have been developed to exert ferroptosis-inducing and/or inhibiting reactions, such as erastin and iron-chelating compounds, respectively. In addition, many natural bioactive compounds have significantly contributed to regulating ferroptosis and ferroptosis-induced oxidative stress. Natural bioactive compounds are largely abundant in food and plants and have been for a long time, inspiring the development of various low-toxic therapeutic drugs. Currently, functional bioactive peptides are widely reported for their antioxidant properties and application in human disease treatment. The scientific evidence from biochemical and in vitro tests of these peptides strongly supports the existence of a relationship between their antioxidant properties (such as iron chelation) and ferroptosis regulation. In this review, we answer questions concerning ferroptosis milestones, its importance in physiopathology mechanisms, and its downstream regulatory mechanisms. We also address ferroptosis regulatory natural compounds as well as provide promising thoughts about bioactive peptides.
科研通智能强力驱动
Strongly Powered by AbleSci AI