BiVO4-Decorated Graphite Felt as Highly Efficient Negative Electrode for All-Vanadium Redox Flow Batteries

氧化还原 电催化剂 电极 材料科学 石墨 电化学 化学工程 无机化学 纳米技术 化学 复合材料 冶金 物理化学 工程类
作者
Daniel Manaye Kabtamu,Yuzhen Li,Anteneh Wodaje Bayeh,Yun-Ting Ou,Zih‐Jhong Huang,Tai‐Chin Chiang,Hsin‐Chih Huang,Chen‐Hao Wang
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:6 (6): 3301-3311 被引量:11
标识
DOI:10.1021/acsaem.2c03891
摘要

Recently, discovering high-performance electrocatalytic materials for vanadium redox flow batteries (VRFBs) has been one of the most crucial tasks. This paper details the successful fabrication of a low-cost platelike bismuth vanadate (BiVO4) material through a simple one-step hydrothermal route, employed as an electrocatalyst to adorn graphite felt (GF) for use as the negative electrode in VRFBs. The experimental results show that BiVO4-3h exhibits the optimal electrocatalytic activity and reversibility for the vanadium redox couples among all samples. The energy efficiency of the VRFB cell assembled with BiVO4-decorated GF as the negative electrode is found to be 75.42% at 100 mA cm–2, which is about 10.24% more efficient than that of the cell assembled with a heat-treated graphite felt (HT-GF) electrode. The possible reasons for the activity enhancement can be ascribed to the existence of oxygen vacancies in the BiVO4 lattice structure and the relatively high surface area of BiVO4, which provide more active sites for facilitating the vanadium redox reactions. Furthermore, the BiVO4-GF electrode obstructs the competitive irreversible hydrogen evolution reaction on the negative side of the cell, and it also has better wettability. Impressively, BiVO4-GF as the negative electrode shows good stability over 100 cycles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左岸SUPER完成签到,获得积分10
2秒前
onlysky完成签到,获得积分10
2秒前
彪壮的绮梅应助sss采纳,获得10
3秒前
3秒前
背后海亦完成签到,获得积分10
3秒前
Milton_z完成签到 ,获得积分10
4秒前
姜姜姜完成签到,获得积分10
4秒前
英姑应助聪明的天亦采纳,获得10
5秒前
我是老大应助zjzjzjzjzj采纳,获得10
5秒前
5秒前
6秒前
6秒前
yhb完成签到,获得积分20
7秒前
耗尽完成签到,获得积分10
7秒前
MoGong应助景胜杰采纳,获得10
7秒前
Wait完成签到,获得积分10
7秒前
ding应助偷偷干饭被抓采纳,获得10
7秒前
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
8秒前
Owen应助科研通管家采纳,获得10
8秒前
YYY应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得30
8秒前
汉堡包应助科研通管家采纳,获得30
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
honger发布了新的文献求助10
9秒前
传奇3应助聂123采纳,获得10
10秒前
fu完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553771
求助须知:如何正确求助?哪些是违规求助? 3129584
关于积分的说明 9383226
捐赠科研通 2828746
什么是DOI,文献DOI怎么找? 1555126
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267