生物膜
光热治疗
体内
光动力疗法
伤口愈合
抗菌剂
微生物学
自愈水凝胶
铜绿假单胞菌
表皮葡萄球菌
金黄色葡萄球菌
材料科学
化学
纳米技术
细菌
医学
生物
免疫学
遗传学
生物技术
有机化学
高分子化学
作者
Ting Du,Zehui Xiao,Guanghui Zhang,Lifei Wei,Jiangli Cao,Zhannuo Zhang,Xingxing Li,Zhiyong Song,Wenjing Wang,Jifeng Liu,Xinjun Du,Shuo Wang
标识
DOI:10.1016/j.actbio.2023.03.008
摘要
Wound treatment is largely influenced by pre-existing hypoxic microenvironments and biofilms, which can severely diminish the efficacy of phototherapy, suggesting the importance of multifunctional nanoplatforms for synergistic treatment of wound infections. Here, we developed a multifunctional injectable hydrogel (PSPG hydrogel) by loading photothermal sensitive sodium nitroprusside (SNP) into Pt-modified porphyrin metal organic framework (PCN) and in situ modification of gold particles to form a near-infrared (NIR) light-triggered all-in-one phototherapeutic nanoplatform. The Pt-modified nanoplatform exhibits a remarkable catalase-like behavior and promotes the continuous decomposition of endogenous H2O2 into O2, thereby enhancing the photodynamic therapy (PDT) effect under hypoxia. Under dual NIR irradiation, PSPG hydrogel can not only produce hyperthermia (η=89.21%) but also generate reactive oxygen species and trigger NO release, contributing jointly to removal of biofilms and disruption of the cell membranes of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). In vivo experiments demonstrated a 99.9% reduction in bacterial burden on wounds. Additionally, PSPG hydrogel can accelerate MRSA-infected and Pseudomonas aeruginosa-infected (P. aeruginosa-infected) wound healing by promoting angiogenesis, collagen deposition, and suppressing inflammatory responses. Furthermore, in vitro and in vivo experiments revealed that PSPG hydrogel has good cytocompatibility. Overall, we proposed an antimicrobial strategy to eliminate bacteria through the synergistic effects of gas-photodynamic-photothermal killing, alleviating hypoxia in the bacterial infection microenvironment, and inhibiting biofilms, offering a new way against antimicrobial resistance and biofilm-associated infections. The NIR light-triggered multifunctional injectable hydrogel nanoplatform (PSPG hydrogel) based on Pt-decorated gold nanoparticles with sodium nitroprusside (SNP)-loading porphyrin metal organic framework (PCN) as inner templates can efficiently perform photothermal conversion (η=89.21%) to trigger NO release from SNP, while continuously regulating the hypoxic microenvironment at the bacterial infection site through Pt-induced self-oxygenation, achieving efficient sterilization and removal of biofilm by synergistic PDT and PTT phototherapy. In vivo and in vitro experiments demonstrated that the PSPG hydrogel has significant anti-biofilm, antibacterial, and inflammatory regulatory functions. This study proposed an antimicrobial strategy to eliminate bacteria through the synergistic effects of gas-photodynamic-photothermal killing, alleviating hypoxia in the bacterial infection microenvironment, and inhibiting biofilms.
科研通智能强力驱动
Strongly Powered by AbleSci AI