Electrocatalytic Properties of Co3O4 Prepared on Carbon Fibers by Thermal Metal–Organic Deposition for the Oxygen Evolution Reaction in Alkaline Water Electrolysis

电催化剂 电解 析氧 材料科学 氧气 化学工程 电解水 沉积(地质) 碳纤维 金属 碱性水电解 无机化学 电极 电化学 化学 冶金 复合材料 有机化学 复合数 工程类 生物 物理化学 古生物学 电解质 沉积物
作者
Myeong Gyu Kim,Yun-Hyuk Choi
出处
期刊:Nanomaterials [MDPI AG]
卷期号:13 (6): 1021-1021 被引量:1
标识
DOI:10.3390/nano13061021
摘要

Cobalt oxide (Co3O4) serves as a promising electrocatalyst for oxygen evolution reactions (OER) in water-electrolytic hydrogen production. For more practical applications, advances in dry-deposition processes for the high-throughput fabrication of such Co3O4 electrocatalysts are needed. In this work, a thermal metal-organic deposition (MOD) technique is developed to form Co3O4 deposits on microscale-diameter carbon fibers constituting a carbon fiber paper (CFP) substrate for high-efficiency OER electrocatalyst applications. The Co3O4 electrocatalysts are deposited while uniformly covering the surface of individual carbon fibers in the reaction temperature range from 400 to 800 °C under an ambient Ar atmosphere. It is found that the microstructure of deposits is dependent on the reaction temperature. The Co3O4 electrocatalysts prepared at 500 °C and over exhibit values of 355-384 mV in overpotential (η10) required to reach a current density of 10 mA cm-2 and 70-79 mV dec-1 in Tafel slope, measured in 1 M KOH aqueous solution. As a result, it is highlighted that the improved crystallinity of the Co3O4 electrocatalyst with the increased reaction temperature leads to an enhancement in electrode-level OER activity with the high electrochemically active surface area (ECSA), low charge transfer resistance (Rct), and low η10, due to the enhanced electrical conductivity. On the other hand, it is found that the inherent catalytic activity of the surface sites of the Co3O4, represented by the turnover frequency (TOF), decreases with reaction temperature due to the high-temperature sintering effect. This work provides the groundwork for the high-throughput fabrication and rational design of high-performance electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助幸福胡萝卜采纳,获得10
刚刚
通~发布了新的文献求助10
刚刚
1秒前
科目三应助Arnold采纳,获得10
1秒前
润润轩轩发布了新的文献求助10
2秒前
宗笑晴发布了新的文献求助10
2秒前
lucky完成签到,获得积分10
2秒前
糖糖发布了新的文献求助10
3秒前
3秒前
跳跃尔容完成签到,获得积分10
4秒前
wyblobin完成签到,获得积分10
4秒前
4秒前
5秒前
沉默沛岚完成签到,获得积分10
5秒前
丰知然应助宇文宛菡采纳,获得10
5秒前
所所应助tu采纳,获得30
6秒前
mechefy完成签到,获得积分10
6秒前
鲤鱼萧完成签到,获得积分10
7秒前
宗笑晴完成签到,获得积分10
7秒前
8秒前
小蘑菇应助头发乱了采纳,获得10
8秒前
代萌萌发布了新的文献求助10
9秒前
jucy发布了新的文献求助50
9秒前
9秒前
Lz完成签到,获得积分10
9秒前
Hello应助葛辉辉采纳,获得10
9秒前
秦嘉旎完成签到,获得积分10
10秒前
华仔应助通~采纳,获得10
10秒前
万能图书馆应助半颗橙子采纳,获得10
10秒前
樱铃完成签到,获得积分10
11秒前
11秒前
上官若男应助俭朴的明轩采纳,获得10
11秒前
1199发布了新的文献求助10
12秒前
英姑应助包容的过客采纳,获得10
13秒前
标致的战斗机完成签到,获得积分10
13秒前
科研人发布了新的文献求助10
14秒前
hl完成签到,获得积分10
14秒前
14秒前
14秒前
科研通AI5应助dingdong采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762