Electrocatalytic Properties of Co3O4 Prepared on Carbon Fibers by Thermal Metal–Organic Deposition for the Oxygen Evolution Reaction in Alkaline Water Electrolysis

电催化剂 电解 析氧 材料科学 氧气 化学工程 电解水 沉积(地质) 碳纤维 金属 碱性水电解 无机化学 电极 电化学 化学 冶金 复合材料 有机化学 复合数 工程类 物理化学 古生物学 沉积物 电解质 生物
作者
Myeong Gyu Kim,Yun-Hyuk Choi
出处
期刊:Nanomaterials [MDPI AG]
卷期号:13 (6): 1021-1021 被引量:1
标识
DOI:10.3390/nano13061021
摘要

Cobalt oxide (Co3O4) serves as a promising electrocatalyst for oxygen evolution reactions (OER) in water-electrolytic hydrogen production. For more practical applications, advances in dry-deposition processes for the high-throughput fabrication of such Co3O4 electrocatalysts are needed. In this work, a thermal metal-organic deposition (MOD) technique is developed to form Co3O4 deposits on microscale-diameter carbon fibers constituting a carbon fiber paper (CFP) substrate for high-efficiency OER electrocatalyst applications. The Co3O4 electrocatalysts are deposited while uniformly covering the surface of individual carbon fibers in the reaction temperature range from 400 to 800 °C under an ambient Ar atmosphere. It is found that the microstructure of deposits is dependent on the reaction temperature. The Co3O4 electrocatalysts prepared at 500 °C and over exhibit values of 355-384 mV in overpotential (η10) required to reach a current density of 10 mA cm-2 and 70-79 mV dec-1 in Tafel slope, measured in 1 M KOH aqueous solution. As a result, it is highlighted that the improved crystallinity of the Co3O4 electrocatalyst with the increased reaction temperature leads to an enhancement in electrode-level OER activity with the high electrochemically active surface area (ECSA), low charge transfer resistance (Rct), and low η10, due to the enhanced electrical conductivity. On the other hand, it is found that the inherent catalytic activity of the surface sites of the Co3O4, represented by the turnover frequency (TOF), decreases with reaction temperature due to the high-temperature sintering effect. This work provides the groundwork for the high-throughput fabrication and rational design of high-performance electrocatalysts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助173678采纳,获得10
刚刚
快乐的青柏完成签到,获得积分0
1秒前
1秒前
Owen应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
慢慢发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
y9gyn_37应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
Jared应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得30
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
郑浩完成签到,获得积分10
5秒前
科目三应助liffchao采纳,获得10
5秒前
冰红茶完成签到,获得积分10
6秒前
ywhys完成签到,获得积分10
6秒前
AIBL发布了新的文献求助10
7秒前
7秒前
Survive完成签到,获得积分10
7秒前
英俊的铭应助丑小鸭采纳,获得10
7秒前
Hangerli发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
今后应助Lynne采纳,获得10
10秒前
研友_LMNqrn发布了新的文献求助10
10秒前
看满天星河完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665926
求助须知:如何正确求助?哪些是违规求助? 4878759
关于积分的说明 15115809
捐赠科研通 4825184
什么是DOI,文献DOI怎么找? 2583119
邀请新用户注册赠送积分活动 1537092
关于科研通互助平台的介绍 1495480