亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SAR image near-shore ship target detection method in complex background

计算机科学 人工智能 特征提取 特征(语言学) 模式识别(心理学) 卷积(计算机科学) 恒虚警率 计算机视觉 合成孔径雷达 目标检测 假警报 遥感 人工神经网络 地质学 语言学 哲学
作者
Yonggang Li,Weigang Zhu,Chenxuan Li,Chuangzhan Zeng
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (3): 924-952 被引量:10
标识
DOI:10.1080/01431161.2023.2173030
摘要

Due to background clutter in synthetic aperture radar (SAR) images, the detection of dense ship targets suffers from a low detection rate, high false alarm rate, and high missed detection rate. To address this issue, an FSM-DFF-YOLOv5+Confluence algorithm is proposed in this paper for the detection of near-shore ship targets in SAR images with complex backgrounds. First, based on the YOLOv5 target detection algorithm, two improvements are made in the feature extraction network: feature refinement and multi-feature fusion; in the feature extraction network, deformable convolutional neural networks are adopted to change the position of the target sampling points of the convolution to improve the feature extraction capability of the target and the detection rate of ship targets in SAR images with a complex background; in the multi-feature fusion network structure, cascading and parallel pyramids are used in the multi-feature fusion network to realize feature fusion at different levels; the visual perceptual field of feature extraction is expanded by using null convolution to enhance the adaptability of the network to detect near-shore multi-scale ship targets with complex backgrounds and reduce the false alarm rate of ship target detection in SAR images with complex environments. In this way, the DFF-YOLOv5 near-shore ship target detection algorithm is established. Meanwhile, to address the problem of missed detection in near-shore dense ship target detection, this paper adds rectangular convolution kernels to the convolution of the feature extraction network to better realize the feature extraction of dense ship targets in SAR images with complex backgrounds. Besides, the Confluence algorithm instead of non-maximum suppression is used in the prediction stage. Through experiments on the constructed complex background near-shore ship detection dataset, it is indicated that the average accuracy of the FSM-DFF-YOLOv5+Confluence detection algorithm reaches 88.96%, and the recall rate reaches 88.80%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
yang发布了新的文献求助10
14秒前
28秒前
隐形曼青应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
逆天大脚发布了新的文献求助10
33秒前
39秒前
赘婿应助逆天大脚采纳,获得10
44秒前
丘比特应助可靠的寒风采纳,获得10
52秒前
科研通AI2S应助H_C采纳,获得10
1分钟前
1分钟前
1分钟前
clover发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
Jack发布了新的文献求助10
2分钟前
LYT完成签到 ,获得积分20
2分钟前
2分钟前
mengliu完成签到,获得积分10
2分钟前
FashionBoy应助Jack采纳,获得10
2分钟前
糕糕完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI2S应助可靠的寒风采纳,获得10
3分钟前
3分钟前
4分钟前
逆天大脚发布了新的文献求助10
4分钟前
4分钟前
逆天大脚完成签到,获得积分10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
4分钟前
Davy_Y发布了新的文献求助10
5分钟前
5分钟前
多读苏发布了新的文献求助10
5分钟前
隐形曼青应助Davy_Y采纳,获得10
5分钟前
5分钟前
jyy应助落寞奎采纳,获得10
5分钟前
6分钟前
6分钟前
Sarah发布了新的文献求助10
6分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335317
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8614028
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447385
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974