SAR image near-shore ship target detection method in complex background

计算机科学 人工智能 特征提取 特征(语言学) 模式识别(心理学) 卷积(计算机科学) 恒虚警率 计算机视觉 合成孔径雷达 目标检测 假警报 遥感 人工神经网络 地质学 语言学 哲学
作者
Yonggang Li,Weigang Zhu,Chenxuan Li,Chuangzhan Zeng
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (3): 924-952 被引量:10
标识
DOI:10.1080/01431161.2023.2173030
摘要

Due to background clutter in synthetic aperture radar (SAR) images, the detection of dense ship targets suffers from a low detection rate, high false alarm rate, and high missed detection rate. To address this issue, an FSM-DFF-YOLOv5+Confluence algorithm is proposed in this paper for the detection of near-shore ship targets in SAR images with complex backgrounds. First, based on the YOLOv5 target detection algorithm, two improvements are made in the feature extraction network: feature refinement and multi-feature fusion; in the feature extraction network, deformable convolutional neural networks are adopted to change the position of the target sampling points of the convolution to improve the feature extraction capability of the target and the detection rate of ship targets in SAR images with a complex background; in the multi-feature fusion network structure, cascading and parallel pyramids are used in the multi-feature fusion network to realize feature fusion at different levels; the visual perceptual field of feature extraction is expanded by using null convolution to enhance the adaptability of the network to detect near-shore multi-scale ship targets with complex backgrounds and reduce the false alarm rate of ship target detection in SAR images with complex environments. In this way, the DFF-YOLOv5 near-shore ship target detection algorithm is established. Meanwhile, to address the problem of missed detection in near-shore dense ship target detection, this paper adds rectangular convolution kernels to the convolution of the feature extraction network to better realize the feature extraction of dense ship targets in SAR images with complex backgrounds. Besides, the Confluence algorithm instead of non-maximum suppression is used in the prediction stage. Through experiments on the constructed complex background near-shore ship detection dataset, it is indicated that the average accuracy of the FSM-DFF-YOLOv5+Confluence detection algorithm reaches 88.96%, and the recall rate reaches 88.80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助Hangerli采纳,获得10
1秒前
完美凝竹完成签到,获得积分10
2秒前
zfzf0422发布了新的文献求助10
3秒前
蜘蛛道理完成签到 ,获得积分10
3秒前
冷傲迎梦发布了新的文献求助10
4秒前
852应助MEME采纳,获得10
4秒前
Godzilla发布了新的文献求助10
4秒前
大模型应助咕噜仔采纳,获得10
5秒前
蒋时晏应助pharmstudent采纳,获得30
5秒前
6秒前
忘羡222发布了新的文献求助20
7秒前
魏伯安发布了新的文献求助10
7秒前
8秒前
不爱吃糖完成签到,获得积分10
8秒前
9秒前
balabala发布了新的文献求助10
10秒前
睿123456完成签到,获得积分10
11秒前
此话当真完成签到,获得积分10
12秒前
14秒前
慕青应助wmmm采纳,获得10
15秒前
科研通AI2S应助夏夏采纳,获得10
15秒前
隐形曼青应助夏夏采纳,获得10
15秒前
睿123456发布了新的文献求助10
15秒前
Godzilla完成签到,获得积分10
15秒前
李健应助ponyy采纳,获得30
15秒前
科研通AI5应助skier采纳,获得10
16秒前
猪猪hero应助Jasen采纳,获得10
17秒前
俭朴的大有完成签到,获得积分10
18秒前
大侠发布了新的文献求助10
18秒前
赵大宝完成签到,获得积分10
18秒前
20秒前
跳跃曼文发布了新的文献求助30
21秒前
21秒前
研友_VZG7GZ应助稀罕你采纳,获得10
21秒前
23秒前
Aries完成签到,获得积分10
25秒前
25秒前
Pretrial完成签到 ,获得积分10
25秒前
Jocelyn7发布了新的文献求助10
26秒前
wmmm发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824