SAR image near-shore ship target detection method in complex background

计算机科学 人工智能 特征提取 特征(语言学) 模式识别(心理学) 卷积(计算机科学) 恒虚警率 计算机视觉 合成孔径雷达 目标检测 假警报 遥感 人工神经网络 地质学 语言学 哲学
作者
Yonggang Li,Weigang Zhu,Chenxuan Li,Chuangzhan Zeng
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (3): 924-952 被引量:10
标识
DOI:10.1080/01431161.2023.2173030
摘要

Due to background clutter in synthetic aperture radar (SAR) images, the detection of dense ship targets suffers from a low detection rate, high false alarm rate, and high missed detection rate. To address this issue, an FSM-DFF-YOLOv5+Confluence algorithm is proposed in this paper for the detection of near-shore ship targets in SAR images with complex backgrounds. First, based on the YOLOv5 target detection algorithm, two improvements are made in the feature extraction network: feature refinement and multi-feature fusion; in the feature extraction network, deformable convolutional neural networks are adopted to change the position of the target sampling points of the convolution to improve the feature extraction capability of the target and the detection rate of ship targets in SAR images with a complex background; in the multi-feature fusion network structure, cascading and parallel pyramids are used in the multi-feature fusion network to realize feature fusion at different levels; the visual perceptual field of feature extraction is expanded by using null convolution to enhance the adaptability of the network to detect near-shore multi-scale ship targets with complex backgrounds and reduce the false alarm rate of ship target detection in SAR images with complex environments. In this way, the DFF-YOLOv5 near-shore ship target detection algorithm is established. Meanwhile, to address the problem of missed detection in near-shore dense ship target detection, this paper adds rectangular convolution kernels to the convolution of the feature extraction network to better realize the feature extraction of dense ship targets in SAR images with complex backgrounds. Besides, the Confluence algorithm instead of non-maximum suppression is used in the prediction stage. Through experiments on the constructed complex background near-shore ship detection dataset, it is indicated that the average accuracy of the FSM-DFF-YOLOv5+Confluence detection algorithm reaches 88.96%, and the recall rate reaches 88.80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
比比谁的速度快应助曾珍采纳,获得50
刚刚
2秒前
NiNi完成签到,获得积分10
3秒前
Ther完成签到,获得积分20
4秒前
傲娇白安完成签到,获得积分10
5秒前
5秒前
甜蜜的荟完成签到,获得积分20
6秒前
婷儿完成签到,获得积分10
6秒前
牛牛发布了新的文献求助10
6秒前
Hoper完成签到,获得积分10
6秒前
张曰淼完成签到,获得积分10
7秒前
共渡完成签到,获得积分10
9秒前
凉白开完成签到 ,获得积分10
10秒前
跳跃的太君完成签到,获得积分10
11秒前
小猪发布了新的文献求助10
11秒前
独特问夏完成签到,获得积分10
12秒前
12秒前
13秒前
魔幻蓉完成签到,获得积分10
13秒前
杠赛来完成签到,获得积分10
13秒前
ccy完成签到 ,获得积分10
14秒前
Ch185完成签到,获得积分10
15秒前
欣喜的复天完成签到,获得积分10
17秒前
摸鱼校尉完成签到,获得积分0
17秒前
双儿完成签到,获得积分10
17秒前
顺利毕业完成签到 ,获得积分10
17秒前
儒雅的焦完成签到 ,获得积分10
17秒前
小何完成签到 ,获得积分10
17秒前
19秒前
20秒前
小曾应助张绪帆采纳,获得10
20秒前
麻麻薯完成签到 ,获得积分10
21秒前
21秒前
Smes完成签到,获得积分10
21秒前
王金豪发布了新的文献求助10
22秒前
勤劳冰烟完成签到,获得积分10
22秒前
顺顺尼完成签到 ,获得积分10
23秒前
24秒前
阿曾发布了新的文献求助10
25秒前
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029