SAR image near-shore ship target detection method in complex background

计算机科学 人工智能 特征提取 特征(语言学) 模式识别(心理学) 卷积(计算机科学) 恒虚警率 计算机视觉 合成孔径雷达 目标检测 假警报 遥感 人工神经网络 地质学 语言学 哲学
作者
Yonggang Li,Weigang Zhu,Chenxuan Li,Chuangzhan Zeng
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (3): 924-952 被引量:10
标识
DOI:10.1080/01431161.2023.2173030
摘要

Due to background clutter in synthetic aperture radar (SAR) images, the detection of dense ship targets suffers from a low detection rate, high false alarm rate, and high missed detection rate. To address this issue, an FSM-DFF-YOLOv5+Confluence algorithm is proposed in this paper for the detection of near-shore ship targets in SAR images with complex backgrounds. First, based on the YOLOv5 target detection algorithm, two improvements are made in the feature extraction network: feature refinement and multi-feature fusion; in the feature extraction network, deformable convolutional neural networks are adopted to change the position of the target sampling points of the convolution to improve the feature extraction capability of the target and the detection rate of ship targets in SAR images with a complex background; in the multi-feature fusion network structure, cascading and parallel pyramids are used in the multi-feature fusion network to realize feature fusion at different levels; the visual perceptual field of feature extraction is expanded by using null convolution to enhance the adaptability of the network to detect near-shore multi-scale ship targets with complex backgrounds and reduce the false alarm rate of ship target detection in SAR images with complex environments. In this way, the DFF-YOLOv5 near-shore ship target detection algorithm is established. Meanwhile, to address the problem of missed detection in near-shore dense ship target detection, this paper adds rectangular convolution kernels to the convolution of the feature extraction network to better realize the feature extraction of dense ship targets in SAR images with complex backgrounds. Besides, the Confluence algorithm instead of non-maximum suppression is used in the prediction stage. Through experiments on the constructed complex background near-shore ship detection dataset, it is indicated that the average accuracy of the FSM-DFF-YOLOv5+Confluence detection algorithm reaches 88.96%, and the recall rate reaches 88.80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助vixerunt采纳,获得10
1秒前
谦让寻绿发布了新的文献求助10
1秒前
1秒前
科研通AI5应助cks采纳,获得10
2秒前
蒋皓天完成签到,获得积分10
3秒前
wqy完成签到,获得积分10
3秒前
张颖完成签到,获得积分10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
tests发布了新的文献求助30
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
飘逸的烧鹅完成签到 ,获得积分10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
王永明发布了新的文献求助10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
香蕉觅云应助寒冷雨琴采纳,获得10
5秒前
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213838
求助须知:如何正确求助?哪些是违规求助? 4389433
关于积分的说明 13667096
捐赠科研通 4250632
什么是DOI,文献DOI怎么找? 2332136
邀请新用户注册赠送积分活动 1329805
关于科研通互助平台的介绍 1283453