色素敏化染料
材料科学
三碘化物
辅助电极
二硫化钼
太阳能电池
石墨氮化碳
化学工程
拉曼光谱
氧化锡
循环伏安法
光催化
纳米技术
电极
电化学
催化作用
兴奋剂
化学
光电子学
光学
物理
工程类
物理化学
电解质
冶金
生物化学
作者
Sedigheh khorrambin,Shahram Ghasemi,Sayed Reza Hosseini
标识
DOI:10.1016/j.jallcom.2022.167220
摘要
Graphitic carbon nitride (g-C3N4) has special semiconducting properties which make it candiate for several catalytic processes. The subject of using g-C3N4 for electrochemical studies such as energy storage and conversion is important aspect which may be considered for further investigations. In this research, nanostructured molybdenum sulfide (MoS2)/g-C3N4 was synthesized through sonochemical method and used as active material for the fabrication of counter electrode (CE) in dye-sensitized solar cell (DSSC). MoS2 was synthesized by hydrothermal method and g-C3N4 was prepared using thiourea precursor through condensation polymerization method. Then, two materials were combined under ultrasonic irradiation to obtain nanostructured MoS2/g-C3N4. For preparation of CE, the nanohybrid was coated onto fluorine doped tin oxide (FTO) glass. Structural characterization of MoS2 /g-C3N4 nanohybrid was perfoemed uisng X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The MoS2 /g-C3N4 CE displays higher current density and lower overpotentials for redox reactions of triiodide/iodide (I3-/I-) than MoS2 and g-C3N4 CEs and has high catalytic activity and low charge transfer resistance. The photoanode was prepared using a transparent layer of 20 nm sized TiO2 nanoparticles and a reflective layer of 300 nm sized TiO2 particles pasted on FTO and then sensitized with immersion in 0.4 mM N719 dye. The fabricated DSSC based on MoS2/g-C3N4 CE was investigated using J-V analysis under AM 1.5 irradiation (100 mW cm−2) and a maximum power conversion efficiency of 6.69% was obtained. The results showed that the idea of using g-C3N4 in the preparation of new hybrid materials for CEs can be considered to improve the performance of DSSC.
科研通智能强力驱动
Strongly Powered by AbleSci AI