Earth orientation parameters prediction based on the hybrid SSA + LS + SVM model

极移 外推法 支持向量机 自回归模型 算法 计算机科学 系列(地层学) 大地基准 最小二乘函数近似 奇异谱分析 人工智能 数学 模式识别(心理学) 大地测量学 统计 地球自转 地质学 奇异值分解 古生物学 估计员
作者
Yuguo Yang,Wenfeng Nie,Tianhe Xu,Zhenlong Fang,Huijie Xue,Zhangzhen Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (12): 125011-125011 被引量:4
标识
DOI:10.1088/1361-6501/ac8ec6
摘要

Abstract The high-precision prediction of Earth orientation parameters (EOPs) is essential for astro-geodynamics, high-precision space navigation and positioning, on-board autonomous orbits determination and deep space exploration. However, the prediction accuracy of existing models is much lower than the estimation accuracy of geodetic technical solutions, which affects certain high-precision real-time users. To improve the prediction accuracy of EOP in short- and long-term period, we propose a hybrid model by combining the singular spectrum analysis (SSA), least squares (LSs) and support vector machine (SVM) in the study. Through SSA algorithm, the deterministic time-varying signal of EOP time series can be more precisely and reasonably detected and modeled. Based on the optimization theory, we reconstruct the EOP sequences using SSA and establish the LS extrapolation model based on the reconstructed series. Then, the residuals from SSA reconstruction and those from the LS model, are used for SVM training and prediction. The results of two-year prediction experiments based on the EOP 14 C04 series show that the proposed hybrid model has significant improvements in polar motion (PM) and length of day (LOD) for different prediction intervals (1–360 d) compared with the LS + autoregression (AR) model. The prediction error for x-component of polar motion (PMX) is reduced by 40.2%, 31.0% and 51.4% while that for y-component of polar motion (PMY) is 22.1%, 23.3% and 55.6% for prediction period of 30, 90 and 180 d respectively. For LOD, the maximum prediction improvement can reach to 53.8% during the predicted 360 d. In addition, the proposed method has better accuracy in mid- and long-term PM( x, y ) predictions compared to the Bulletin A, with a 360 d prediction error of 27.273 and 21.741 mas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
糊糊发布了新的文献求助10
1秒前
加一点荒谬完成签到,获得积分10
3秒前
uh发布了新的文献求助10
3秒前
任性怜阳完成签到,获得积分10
3秒前
4秒前
040发布了新的文献求助10
4秒前
4秒前
Rec发布了新的文献求助10
5秒前
5秒前
领导范儿应助宏hong采纳,获得10
5秒前
见弦发布了新的文献求助30
5秒前
神勇的荟完成签到,获得积分10
5秒前
安静的迎南完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
乐乐应助明理的南风采纳,获得10
9秒前
9秒前
王思关注了科研通微信公众号
10秒前
10秒前
上官若男应助敏敏采纳,获得10
10秒前
洋洋呀发布了新的文献求助10
10秒前
山河远完成签到,获得积分10
11秒前
Zcy31098发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
Bruce完成签到,获得积分10
13秒前
13秒前
999eichyy完成签到 ,获得积分10
13秒前
14秒前
崔梦楠完成签到,获得积分10
14秒前
vuig完成签到,获得积分10
14秒前
14秒前
15秒前
大个应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得30
15秒前
Orange应助科研通管家采纳,获得10
15秒前
毛豆应助飞鱼采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305036
求助须知:如何正确求助?哪些是违规求助? 2938975
关于积分的说明 8490811
捐赠科研通 2613426
什么是DOI,文献DOI怎么找? 1427420
科研通“疑难数据库(出版商)”最低求助积分说明 662969
邀请新用户注册赠送积分活动 647614