The privacy protection algorithm of ciphertext nearest neighbor query based on the single Hilbert curve

计算机科学 希尔伯特曲线 密文 k-最近邻算法 算法 加密 人工智能 计算机安全
作者
Daniel Tan,Huajun Wang
出处
期刊:Ksii Transactions on Internet and Information Systems [Korean Society for Internet Information]
卷期号:16 (9)
标识
DOI:10.3837/tiis.2022.09.014
摘要

Nearest neighbor query in location-based services has become a popular application.Aiming at the shortcomings of the privacy protection algorithms of traditional ciphertext nearest neighbor query having the high system overhead because of the usage of the double Hilbert curves and having the inaccurate query results in some special circumstances, a privacy protection algorithm of ciphertext nearest neighbor query which is based on the single Hilbert curve has been proposed.This algorithm uses a single Hilbert curve to transform the two-dimensional coordinates of the points of interest into Hilbert values, and then encrypts them by the order preserving encryption scheme to obtain the one-dimensional ciphertext data which can be compared in numerical size.Then stores the points of interest as elements composed of index value and the ciphertext of the other information about the points of interest on the server-side database.When the user needs to use the nearest neighbor query, firstly calls the approximate nearest neighbor query algorithm proposed in this paper to query on the server-side database, and then obtains the approximate nearest neighbor query results.After that, the accurate nearest neighbor query result can be obtained by calling the precision processing algorithm proposed in this paper.The experimental results show that this privacy protection algorithm of ciphertext nearest neighbor query which is based on the single Hilbert curve is not only feasible, but also optimizes the system overhead and the accuracy of ciphertext nearest neighbor query result.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lily发布了新的文献求助10
2秒前
2秒前
2秒前
YuZhang发布了新的文献求助10
3秒前
sssaasa发布了新的文献求助10
3秒前
wxy完成签到,获得积分10
3秒前
4秒前
香蕉觅云应助淡淡夕阳采纳,获得10
4秒前
鲸鱼发布了新的文献求助10
5秒前
从容小鸽子完成签到,获得积分10
6秒前
7秒前
笑一笑发布了新的文献求助10
7秒前
Coldpal完成签到,获得积分10
7秒前
李梦茹发布了新的文献求助10
7秒前
8秒前
哇哇哇哇发布了新的文献求助10
8秒前
9秒前
充电宝应助李铮采纳,获得10
9秒前
打打应助JasVe采纳,获得50
10秒前
sssaasa完成签到,获得积分20
11秒前
刘荣鑫完成签到,获得积分10
11秒前
饱满香彤完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
顾矜应助李梦茹采纳,获得10
11秒前
wanci应助Ryuichi采纳,获得10
11秒前
violet完成签到,获得积分10
12秒前
MeM发布了新的文献求助10
12秒前
传奇3应助苹果宝宝采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
嘻嘻关注了科研通微信公众号
14秒前
14秒前
14秒前
在水一方应助淡淡夕阳采纳,获得10
15秒前
小二郎应助kk采纳,获得10
15秒前
万能图书馆应助小只采纳,获得10
16秒前
科研通AI2S应助xiao采纳,获得10
16秒前
17秒前
17秒前
科目三应助wcz采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762020
求助须知:如何正确求助?哪些是违规求助? 5533545
关于积分的说明 15401764
捐赠科研通 4898295
什么是DOI,文献DOI怎么找? 2634801
邀请新用户注册赠送积分活动 1582925
关于科研通互助平台的介绍 1538165