The privacy protection algorithm of ciphertext nearest neighbor query based on the single Hilbert curve

计算机科学 希尔伯特曲线 密文 k-最近邻算法 算法 加密 人工智能 计算机安全
作者
Daniel Tan,Huajun Wang
出处
期刊:Ksii Transactions on Internet and Information Systems [Korean Society for Internet Information]
卷期号:16 (9)
标识
DOI:10.3837/tiis.2022.09.014
摘要

Nearest neighbor query in location-based services has become a popular application.Aiming at the shortcomings of the privacy protection algorithms of traditional ciphertext nearest neighbor query having the high system overhead because of the usage of the double Hilbert curves and having the inaccurate query results in some special circumstances, a privacy protection algorithm of ciphertext nearest neighbor query which is based on the single Hilbert curve has been proposed.This algorithm uses a single Hilbert curve to transform the two-dimensional coordinates of the points of interest into Hilbert values, and then encrypts them by the order preserving encryption scheme to obtain the one-dimensional ciphertext data which can be compared in numerical size.Then stores the points of interest as elements composed of index value and the ciphertext of the other information about the points of interest on the server-side database.When the user needs to use the nearest neighbor query, firstly calls the approximate nearest neighbor query algorithm proposed in this paper to query on the server-side database, and then obtains the approximate nearest neighbor query results.After that, the accurate nearest neighbor query result can be obtained by calling the precision processing algorithm proposed in this paper.The experimental results show that this privacy protection algorithm of ciphertext nearest neighbor query which is based on the single Hilbert curve is not only feasible, but also optimizes the system overhead and the accuracy of ciphertext nearest neighbor query result.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Syzhou发布了新的文献求助10
1秒前
Larluli发布了新的文献求助10
2秒前
4秒前
张庆伟发布了新的文献求助10
4秒前
4秒前
科目三应助清爽的诗云采纳,获得10
5秒前
ryh发布了新的文献求助30
5秒前
勤劳问芙完成签到,获得积分10
7秒前
7秒前
lasak发布了新的文献求助10
7秒前
ligen完成签到,获得积分10
8秒前
better发布了新的文献求助10
8秒前
Syzhou完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
pu发布了新的文献求助10
12秒前
英姑应助rgsrgrs采纳,获得10
13秒前
shlw完成签到,获得积分10
13秒前
lasak完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
含蓄文博完成签到 ,获得积分10
14秒前
积极幻然完成签到 ,获得积分10
15秒前
英姑应助泽山咸采纳,获得10
15秒前
萧水白完成签到,获得积分10
15秒前
aaaaa发布了新的文献求助10
16秒前
woyufengtian完成签到,获得积分10
16秒前
17秒前
rgsrgrs完成签到,获得积分10
17秒前
惊鸿一面完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助30
19秒前
Larluli完成签到,获得积分20
21秒前
21秒前
说话请投币完成签到,获得积分10
21秒前
iNk应助明杰采纳,获得10
22秒前
DS发布了新的文献求助10
22秒前
22秒前
Twonej应助datiancaihaha采纳,获得30
23秒前
CodeCraft应助nuo_11采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513