The Little Engine that Could: Regularization by Denoising (RED)

去模糊 降噪 正规化(语言学) 计算机科学 反问题 杠杆(统计) 数学优化 图像处理 图像去噪 利用 图像复原 人工智能 图像(数学) 算法 数学 数学分析 计算机安全
作者
Yaniv Romano,Michael Elad,Peyman Milanfar
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.1611.02862
摘要

Removal of noise from an image is an extensively studied problem in image processing. Indeed, the recent advent of sophisticated and highly effective denoising algorithms lead some to believe that existing methods are touching the ceiling in terms of noise removal performance. Can we leverage this impressive achievement to treat other tasks in image processing? Recent work has answered this question positively, in the form of the Plug-and-Play Prior ($P^3$) method, showing that any inverse problem can be handled by sequentially applying image denoising steps. This relies heavily on the ADMM optimization technique in order to obtain this chained denoising interpretation. Is this the only way in which tasks in image processing can exploit the image denoising engine? In this paper we provide an alternative, more powerful and more flexible framework for achieving the same goal. As opposed to the $P^3$ method, we offer Regularization by Denoising (RED): using the denoising engine in defining the regularization of the inverse problem. We propose an explicit image-adaptive Laplacian-based regularization functional, making the overall objective functional clearer and better defined. With a complete flexibility to choose the iterative optimization procedure for minimizing the above functional, RED is capable of incorporating any image denoising algorithm, treat general inverse problems very effectively, and is guaranteed to converge to the globally optimal result. We test this approach and demonstrate state-of-the-art results in the image deblurring and super-resolution problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助ym采纳,获得10
2秒前
求助人员发布了新的文献求助10
2秒前
2秒前
3秒前
小怪兽完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
ding应助科研通管家采纳,获得30
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
Whim应助科研通管家采纳,获得50
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得30
5秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
小二郎应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
大模型应助科研通管家采纳,获得20
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720240
求助须知:如何正确求助?哪些是违规求助? 5259215
关于积分的说明 15290544
捐赠科研通 4869684
什么是DOI,文献DOI怎么找? 2614942
邀请新用户注册赠送积分活动 1564958
关于科研通互助平台的介绍 1522093