The Little Engine that Could: Regularization by Denoising (RED)

去模糊 降噪 正规化(语言学) 计算机科学 反问题 杠杆(统计) 数学优化 图像处理 图像去噪 利用 图像复原 人工智能 图像(数学) 算法 数学 数学分析 计算机安全
作者
Yaniv Romano,Michael Elad,Peyman Milanfar
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.1611.02862
摘要

Removal of noise from an image is an extensively studied problem in image processing. Indeed, the recent advent of sophisticated and highly effective denoising algorithms lead some to believe that existing methods are touching the ceiling in terms of noise removal performance. Can we leverage this impressive achievement to treat other tasks in image processing? Recent work has answered this question positively, in the form of the Plug-and-Play Prior ($P^3$) method, showing that any inverse problem can be handled by sequentially applying image denoising steps. This relies heavily on the ADMM optimization technique in order to obtain this chained denoising interpretation. Is this the only way in which tasks in image processing can exploit the image denoising engine? In this paper we provide an alternative, more powerful and more flexible framework for achieving the same goal. As opposed to the $P^3$ method, we offer Regularization by Denoising (RED): using the denoising engine in defining the regularization of the inverse problem. We propose an explicit image-adaptive Laplacian-based regularization functional, making the overall objective functional clearer and better defined. With a complete flexibility to choose the iterative optimization procedure for minimizing the above functional, RED is capable of incorporating any image denoising algorithm, treat general inverse problems very effectively, and is guaranteed to converge to the globally optimal result. We test this approach and demonstrate state-of-the-art results in the image deblurring and super-resolution problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助wan采纳,获得10
刚刚
天天快乐应助CC采纳,获得10
刚刚
刚刚
Ava应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
飘逸冷珍发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
Hunter1023完成签到,获得积分10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
宋明阳应助科研通管家采纳,获得10
2秒前
宋明阳应助科研通管家采纳,获得10
2秒前
ParkMoonJ发布了新的文献求助10
2秒前
阔达宝莹完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
2秒前
zz发布了新的文献求助10
3秒前
4秒前
Rita发布了新的文献求助10
4秒前
顾矜应助黄志广采纳,获得10
5秒前
阔达宝莹发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
勤奋帽子发布了新的文献求助10
6秒前
snow发布了新的文献求助30
7秒前
明理的鸿煊完成签到,获得积分10
7秒前
蛰曜发布了新的文献求助10
8秒前
aczqay发布了新的文献求助10
9秒前
ckk发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436160
求助须知:如何正确求助?哪些是违规求助? 4548217
关于积分的说明 14212695
捐赠科研通 4468449
什么是DOI,文献DOI怎么找? 2449020
邀请新用户注册赠送积分活动 1439955
关于科研通互助平台的介绍 1416594