The Little Engine that Could: Regularization by Denoising (RED)

去模糊 降噪 正规化(语言学) 计算机科学 反问题 杠杆(统计) 数学优化 图像处理 图像去噪 利用 图像复原 人工智能 图像(数学) 算法 数学 数学分析 计算机安全
作者
Yaniv Romano,Michael Elad,Peyman Milanfar
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.1611.02862
摘要

Removal of noise from an image is an extensively studied problem in image processing. Indeed, the recent advent of sophisticated and highly effective denoising algorithms lead some to believe that existing methods are touching the ceiling in terms of noise removal performance. Can we leverage this impressive achievement to treat other tasks in image processing? Recent work has answered this question positively, in the form of the Plug-and-Play Prior ($P^3$) method, showing that any inverse problem can be handled by sequentially applying image denoising steps. This relies heavily on the ADMM optimization technique in order to obtain this chained denoising interpretation. Is this the only way in which tasks in image processing can exploit the image denoising engine? In this paper we provide an alternative, more powerful and more flexible framework for achieving the same goal. As opposed to the $P^3$ method, we offer Regularization by Denoising (RED): using the denoising engine in defining the regularization of the inverse problem. We propose an explicit image-adaptive Laplacian-based regularization functional, making the overall objective functional clearer and better defined. With a complete flexibility to choose the iterative optimization procedure for minimizing the above functional, RED is capable of incorporating any image denoising algorithm, treat general inverse problems very effectively, and is guaranteed to converge to the globally optimal result. We test this approach and demonstrate state-of-the-art results in the image deblurring and super-resolution problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JBY完成签到 ,获得积分10
刚刚
racill完成签到 ,获得积分10
5秒前
lmm发布了新的文献求助10
6秒前
Eber完成签到,获得积分10
6秒前
喵了个咪完成签到 ,获得积分10
10秒前
海阔天空完成签到 ,获得积分10
10秒前
15秒前
善善完成签到 ,获得积分10
16秒前
舒心糖豆发布了新的文献求助10
21秒前
24秒前
lina完成签到 ,获得积分10
24秒前
LELE完成签到 ,获得积分10
27秒前
wanghao完成签到 ,获得积分10
27秒前
506407完成签到,获得积分10
35秒前
花生完成签到 ,获得积分10
36秒前
淡然的芷荷完成签到 ,获得积分10
37秒前
王佳亮完成签到,获得积分10
48秒前
忒寒碜完成签到,获得积分10
1分钟前
凌泉完成签到 ,获得积分10
1分钟前
qqaeao完成签到,获得积分10
1分钟前
文献搬运工完成签到 ,获得积分10
1分钟前
shacodow完成签到,获得积分10
1分钟前
ll完成签到,获得积分10
1分钟前
瞿人雄完成签到,获得积分10
1分钟前
Yidie完成签到,获得积分10
1分钟前
没心没肺完成签到,获得积分10
1分钟前
1002SHIB完成签到,获得积分10
1分钟前
zhangguo完成签到 ,获得积分10
1分钟前
nihaolaojiu完成签到,获得积分10
1分钟前
舒心糖豆完成签到 ,获得积分10
1分钟前
sheetung完成签到,获得积分10
1分钟前
学术霸王完成签到,获得积分10
1分钟前
麦田麦兜完成签到,获得积分10
1分钟前
1分钟前
毛毛弟完成签到 ,获得积分10
1分钟前
棕色垂耳兔完成签到 ,获得积分10
1分钟前
weiwei完成签到 ,获得积分10
1分钟前
彭于晏应助潇洒的凝阳采纳,获得10
1分钟前
陆陆完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628654
求助须知:如何正确求助?哪些是违规求助? 4717984
关于积分的说明 14964667
捐赠科研通 4786487
什么是DOI,文献DOI怎么找? 2555877
邀请新用户注册赠送积分活动 1517027
关于科研通互助平台的介绍 1477716