The Little Engine that Could: Regularization by Denoising (RED)

去模糊 降噪 正规化(语言学) 计算机科学 反问题 杠杆(统计) 数学优化 图像处理 图像去噪 利用 图像复原 人工智能 图像(数学) 算法 数学 数学分析 计算机安全
作者
Yaniv Romano,Michael Elad,Peyman Milanfar
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.1611.02862
摘要

Removal of noise from an image is an extensively studied problem in image processing. Indeed, the recent advent of sophisticated and highly effective denoising algorithms lead some to believe that existing methods are touching the ceiling in terms of noise removal performance. Can we leverage this impressive achievement to treat other tasks in image processing? Recent work has answered this question positively, in the form of the Plug-and-Play Prior ($P^3$) method, showing that any inverse problem can be handled by sequentially applying image denoising steps. This relies heavily on the ADMM optimization technique in order to obtain this chained denoising interpretation. Is this the only way in which tasks in image processing can exploit the image denoising engine? In this paper we provide an alternative, more powerful and more flexible framework for achieving the same goal. As opposed to the $P^3$ method, we offer Regularization by Denoising (RED): using the denoising engine in defining the regularization of the inverse problem. We propose an explicit image-adaptive Laplacian-based regularization functional, making the overall objective functional clearer and better defined. With a complete flexibility to choose the iterative optimization procedure for minimizing the above functional, RED is capable of incorporating any image denoising algorithm, treat general inverse problems very effectively, and is guaranteed to converge to the globally optimal result. We test this approach and demonstrate state-of-the-art results in the image deblurring and super-resolution problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅砖家完成签到,获得积分10
刚刚
1秒前
ding应助xiaoju采纳,获得10
1秒前
1秒前
YR应助Certainty橙子采纳,获得20
1秒前
哀莫丶哀生完成签到 ,获得积分10
1秒前
太阳雨发布了新的文献求助10
1秒前
1秒前
Hello应助孔明采纳,获得10
2秒前
2秒前
huaming发布了新的文献求助10
2秒前
bkagyin应助syy080837采纳,获得10
3秒前
九bai发布了新的文献求助10
3秒前
3秒前
Vita完成签到,获得积分10
3秒前
wxx完成签到,获得积分10
4秒前
4秒前
田盐盐发布了新的文献求助10
4秒前
研友_84WJXZ发布了新的文献求助10
4秒前
rikii完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
roooosewang完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
搜集达人应助健达奇趣蛋采纳,获得10
5秒前
zzy完成签到,获得积分10
5秒前
晚阳应助bingbing采纳,获得30
6秒前
6秒前
6秒前
Ryo完成签到,获得积分10
6秒前
7秒前
夏冰发布了新的文献求助10
7秒前
7秒前
科研通AI6应助dongjingbutaire采纳,获得10
7秒前
传奇3应助DM采纳,获得10
7秒前
7秒前
整齐的爆米花完成签到 ,获得积分10
8秒前
8秒前
半个榴莲完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210