Dynamic output‐feedback fuzzy MPC for Takagi‐Sugeno fuzzy systems under event‐triggering–based try‐once‐discard protocol

控制理论(社会学) 模糊逻辑 计算机科学 背景(考古学) 控制器(灌溉) 模糊控制系统 数学优化 协议(科学) 理论(学习稳定性) 数学 控制(管理) 人工智能 机器学习 病理 古生物学 生物 医学 替代医学 农学
作者
Yuying Dong,Yan Song,Jianhua Wang,Bin Zhang
出处
期刊:International Journal of Robust and Nonlinear Control [Wiley]
卷期号:30 (4): 1394-1416 被引量:31
标识
DOI:10.1002/rnc.4816
摘要

Summary The fuzzy model predictive control (FMPC) problem is studied for a class of discrete‐time Takagi‐Sugeno (T‐S) fuzzy systems with hard constraints. In order to improve the network utilization as well as reduce the transmission burden and avoid data collisions, a novel event‐triggering–based try‐once‐discard (TOD) protocol is developed for networks between sensors and the controller. Moreover, due to practical difficulties in obtaining measurements, the dynamic output‐feedback method is introduced to replace the traditional state feedback method for addressing the FMPC problem. Our aim is to design a series of controllers in the framework of dynamic output‐feedback FMPC for T‐S fuzzy systems so as to find a good balance between the system performance and the time efficiency. Considering nonlinearities in the context of the T‐S fuzzy model, a “min‐max” strategy is put forward to formulate an online optimization problem over the infinite‐time horizon. Then, in light of the Lyapunov‐like function approach that fully involves the properties of the T‐S fuzzy model and the proposed protocol, sufficient conditions are derived to guarantee the input‐to‐state stability of the underlying system. In order to handle the side effects of the proposed event‐triggering–based TOD protocol, its impacts are fully taken into consideration by virtue of the S ‐procedure technique and the quadratic boundedness methodology. Furthermore, a certain upper bound of the objective is provided to construct an auxiliary online problem for the solvability, and the corresponding algorithm is given to find the desired controllers. Finally, two numerical examples are used to demonstrate the validity of proposed methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
牙ya发布了新的文献求助10
1秒前
默默的XJ完成签到,获得积分10
2秒前
2秒前
英俊的铭应助michael采纳,获得10
4秒前
领导范儿应助星落枝头采纳,获得10
4秒前
幸福台灯发布了新的文献求助10
4秒前
younghippo发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
浮游应助彼得大帝采纳,获得10
9秒前
Zp发布了新的文献求助10
11秒前
。。。完成签到,获得积分10
11秒前
12秒前
Tingting完成签到 ,获得积分10
12秒前
wwho_O完成签到 ,获得积分10
12秒前
飞阳完成签到,获得积分10
12秒前
12秒前
歪歪发布了新的文献求助10
13秒前
ceeray23应助沉静的含海采纳,获得10
15秒前
15秒前
77发布了新的文献求助10
15秒前
星落枝头发布了新的文献求助10
15秒前
SciGPT应助小小K采纳,获得10
15秒前
Persevere完成签到,获得积分10
16秒前
范范完成签到,获得积分10
17秒前
su发布了新的文献求助10
18秒前
龙海完成签到 ,获得积分10
18秒前
victor完成签到,获得积分10
19秒前
timeless完成签到 ,获得积分10
21秒前
华仔应助小v1212采纳,获得10
23秒前
23秒前
科研通AI6应助zedzed采纳,获得10
24秒前
24秒前
冬虫夏草完成签到,获得积分10
24秒前
求助人员发布了新的文献求助30
25秒前
陈一会完成签到 ,获得积分10
25秒前
沉静的含海完成签到,获得积分20
25秒前
阿烨完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281