Dynamic output‐feedback fuzzy MPC for Takagi‐Sugeno fuzzy systems under event‐triggering–based try‐once‐discard protocol

控制理论(社会学) 模糊逻辑 计算机科学 背景(考古学) 控制器(灌溉) 模糊控制系统 数学优化 协议(科学) 理论(学习稳定性) 数学 控制(管理) 人工智能 机器学习 病理 古生物学 生物 医学 替代医学 农学
作者
Yuying Dong,Yan Song,Jianhua Wang,Bin Zhang
出处
期刊:International Journal of Robust and Nonlinear Control [Wiley]
卷期号:30 (4): 1394-1416 被引量:31
标识
DOI:10.1002/rnc.4816
摘要

Summary The fuzzy model predictive control (FMPC) problem is studied for a class of discrete‐time Takagi‐Sugeno (T‐S) fuzzy systems with hard constraints. In order to improve the network utilization as well as reduce the transmission burden and avoid data collisions, a novel event‐triggering–based try‐once‐discard (TOD) protocol is developed for networks between sensors and the controller. Moreover, due to practical difficulties in obtaining measurements, the dynamic output‐feedback method is introduced to replace the traditional state feedback method for addressing the FMPC problem. Our aim is to design a series of controllers in the framework of dynamic output‐feedback FMPC for T‐S fuzzy systems so as to find a good balance between the system performance and the time efficiency. Considering nonlinearities in the context of the T‐S fuzzy model, a “min‐max” strategy is put forward to formulate an online optimization problem over the infinite‐time horizon. Then, in light of the Lyapunov‐like function approach that fully involves the properties of the T‐S fuzzy model and the proposed protocol, sufficient conditions are derived to guarantee the input‐to‐state stability of the underlying system. In order to handle the side effects of the proposed event‐triggering–based TOD protocol, its impacts are fully taken into consideration by virtue of the S ‐procedure technique and the quadratic boundedness methodology. Furthermore, a certain upper bound of the objective is provided to construct an auxiliary online problem for the solvability, and the corresponding algorithm is given to find the desired controllers. Finally, two numerical examples are used to demonstrate the validity of proposed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
buno应助啦啦采纳,获得10
1秒前
Mike完成签到,获得积分10
1秒前
1秒前
顾矜应助chen采纳,获得10
2秒前
科研通AI5应助小王采纳,获得10
2秒前
GGBond完成签到,获得积分10
2秒前
孔雀翎发布了新的文献求助10
2秒前
寂寞的灵完成签到,获得积分10
3秒前
后知后觉发布了新的文献求助10
3秒前
百十余完成签到,获得积分10
3秒前
3秒前
3秒前
Zhaorf完成签到,获得积分10
4秒前
沉默紫槐完成签到,获得积分10
4秒前
深情安青应助易达采纳,获得10
4秒前
默默海露发布了新的文献求助10
6秒前
7秒前
flyfish完成签到,获得积分10
7秒前
36456657应助chen采纳,获得10
7秒前
每念至此完成签到,获得积分10
8秒前
大力黑米完成签到 ,获得积分10
9秒前
123发布了新的文献求助30
9秒前
搜集达人应助gaos采纳,获得10
9秒前
hengy发布了新的文献求助10
9秒前
杳鸢应助Xenia采纳,获得10
10秒前
kekekelili完成签到,获得积分10
11秒前
11秒前
zhonghbush发布了新的文献求助10
12秒前
reck发布了新的文献求助10
12秒前
12秒前
12秒前
kimcandy完成签到,获得积分10
12秒前
华仔应助任品贤采纳,获得10
13秒前
无花果应助急雪回风采纳,获得10
13秒前
15秒前
曾经的灵完成签到,获得积分20
15秒前
bkagyin应助小宇采纳,获得10
15秒前
许之北完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672