Lung Cancer and Granuloma Identification Using a Deep Learning Model to Extract 3-Dimensional Radiomics Features in CT Imaging

无线电技术 医学 肺癌 恶性肿瘤 接收机工作特性 放射科 人工智能 核医学 病理 计算机科学 内科学
作者
Xiaofeng Lin,Jiao Han,Zhiyong Pang,Huai Chen,Weijie Wu,Xiaoyi Wang,Lang Xiong,Biyun Chen,Yihua Huang,Sheng Li,Li Li
出处
期刊:Clinical Lung Cancer [Elsevier BV]
卷期号:22 (5): e756-e766 被引量:25
标识
DOI:10.1016/j.cllc.2021.02.004
摘要

Abstract

Background

We aimed to evaluate a deep learning (DL) model combining perinodular and intranodular radiomics features and clinical features for preoperative differentiation of solitary granuloma nodules (GNs) from solid lung cancer nodules in patients with spiculation, lobulation, or pleural indentation on CT.

Patients and Methods

We retrospectively recruited 915 patients with solitary solid pulmonary nodules and suspicious signs of malignancy. Data including clinical characteristics and subjective CT findings were obtained. A 3-dimensional U-Net-based DL model was used for tumor segmentation and extraction of 3-dimensional radiomics features. We used the Maximum Relevance and Minimum Redundancy (mRMR) algorithm and the eXtreme Gradient Boosting (XGBoost) algorithm to select the intranodular, perinodular, and gross nodular radiomics features. We propose a medical image DL (IDL) model, a clinical image DL (CIDL) model, a radiomics DL (RDL) model, and a clinical image radiomics DL (CIRDL) model to preoperatively differentiate GNs from solid lung cancer. Five-fold cross-validation was used to select and evaluate the models. The prediction performance of the models was evaluated using receiver operating characteristic and calibration curves.

Results

The CIRDL model achieved the best performance in differentiating between GNs and solid lung cancer (area under the curve [AUC] = 0.9069), which was significantly higher compared with the IDL (AUC = 0.8322), CIDL (AUC = 0.8652), intra-RDL (AUC = 0.8583), peri-RDL (AUC = 0.8259), and gross-RDL (AUC = 0.8705) models.

Conclusion

The proposed CIRDL model is a noninvasive diagnostic tool to differentiate between granuloma nodules and solid lung cancer nodules and reduce the need for invasive diagnostic and surgical procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
infinity完成签到,获得积分10
1秒前
1秒前
忆往昔完成签到,获得积分20
1秒前
发文章完成签到,获得积分10
2秒前
坚强夜白发布了新的文献求助10
2秒前
陈冲发布了新的文献求助10
3秒前
3秒前
熊蔓蔓完成签到,获得积分10
3秒前
枫叶寻涔完成签到,获得积分10
3秒前
忆往昔发布了新的文献求助10
4秒前
5秒前
DrunSin发布了新的文献求助30
5秒前
7秒前
JamesPei应助陈冲采纳,获得10
8秒前
桐桐桐桐桐桐完成签到,获得积分10
8秒前
9秒前
1234发布了新的文献求助10
10秒前
10秒前
11秒前
不会吹口哨完成签到,获得积分10
11秒前
12秒前
迷路盼易发布了新的文献求助10
13秒前
14秒前
DQ发布了新的文献求助10
15秒前
XXDNC完成签到,获得积分10
15秒前
16秒前
17秒前
叶文轩发布了新的文献求助10
17秒前
结实成仁发布了新的文献求助30
18秒前
可靠世平完成签到,获得积分20
19秒前
1234完成签到,获得积分10
19秒前
Axton完成签到,获得积分10
20秒前
之外完成签到 ,获得积分10
20秒前
廖馨馨完成签到,获得积分10
21秒前
科研通AI2S应助之外采纳,获得10
24秒前
CodeCraft应助阿尔法贝塔采纳,获得10
24秒前
Hello应助九卫采纳,获得10
25秒前
昊昊完成签到,获得积分10
25秒前
后知后觉完成签到,获得积分10
26秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952796
求助须知:如何正确求助?哪些是违规求助? 3498228
关于积分的说明 11091005
捐赠科研通 3228793
什么是DOI,文献DOI怎么找? 1785139
邀请新用户注册赠送积分活动 869145
科研通“疑难数据库(出版商)”最低求助积分说明 801350