Inspection of visible components in urine based on deep learning

初始化 计算机科学 人工智能 瓶颈 棱锥(几何) 模式识别(心理学) 特征(语言学) 预处理器 特征提取 图像处理 主成分分析 像素 计算机视觉 图像(数学) 光学 物理 哲学 嵌入式系统 程序设计语言 语言学
作者
Qiaoliang Li,Zhigang Yu,Qi Tao,Lei Zheng,Suwen Qi,Zhuoying He,Shiyu Li,Huimin Guan
出处
期刊:Medical Physics [Wiley]
卷期号:47 (7): 2937-2949 被引量:12
标识
DOI:10.1002/mp.14118
摘要

Purpose Urinary particles are particularly important parameters in clinical urinalysis, especially for the diagnosis of nephropathy. Therefore, it is highly important to precisely detect urinary particles in the clinical setting. However, artificial microscopy is subjective and time consuming, and various previous detection algorithms lack the adequate accuracy. In this study, a method is proposed for the analysis of urinary particles based on deep learning. Methods We used seven cellular components (i.e., erythrocytes, leukocytes, epithelial, low‐transitional epithelium, casts, crystal, and squamous epithelial cells) in the microscopic imaging of urine as the detection targets. After the extraction of features using Resnet50, feature maps of different sizes are obtained in the last few layers of the feature pyramid net (FPN). The feature maps are then input into the classification subnetwork and regression subnetwork for classification and localization respectively, and detection results are obtained. First, we introduce the basic model (RetinaNet) to detect the cellular components in urinary particles, and the features of the objects can then be extracted more effectively by replacing different basic networks. Lastly, the effects of different weight initialization methods and different anchor scales on the performance of the model are investigated. Results We obtained the optimal network structure based on the adjustment of the loss functional parameters, thereby achieving the best results in the test set of urinary particles. The experimental data yielded an accuracy of 88.65% with a processing time of only 0.2 s for each image on a GeForce GTX 1080 graphics processing unit (GPU). Our results demonstrate that this method cannot only achieve the speed of the first‐stage target detector, but also the accuracy of the two‐stage target algorithm in the analysis of urinary particles. Conclusion This study developed new automated analysis urinary particles based on deep learning, and this method is expected to be used for the automated analysis and detection of urinary particles. Moreover, our approach will be useful for the detection of other cells in the clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少年郎完成签到,获得积分20
1秒前
CipherSage应助123lura采纳,获得10
1秒前
七七完成签到,获得积分10
1秒前
科研通AI2S应助小余采纳,获得10
1秒前
苹果骑士完成签到,获得积分10
1秒前
1秒前
shi hui应助jbhb采纳,获得10
2秒前
2秒前
2秒前
JUSTs0so发布了新的文献求助10
2秒前
长夜变清早完成签到,获得积分10
3秒前
4秒前
4秒前
otaro发布了新的文献求助10
5秒前
yinbin完成签到,获得积分10
5秒前
5秒前
独木舟发布了新的文献求助10
5秒前
白衣未央发布了新的文献求助10
5秒前
脑洞疼应助现实的曼荷采纳,获得10
7秒前
7秒前
轩辕德地发布了新的文献求助10
7秒前
三九完成签到,获得积分10
8秒前
orixero应助少年郎采纳,获得10
8秒前
三金发布了新的文献求助10
8秒前
kuku发布了新的文献求助10
8秒前
土豆你个西红柿完成签到 ,获得积分10
9秒前
小余完成签到,获得积分10
9秒前
10秒前
sherry完成签到 ,获得积分10
10秒前
搜集达人应助陈佳琪采纳,获得30
10秒前
xiaohan完成签到,获得积分10
10秒前
独木舟完成签到,获得积分10
10秒前
可爱的函函应助无辜洋葱采纳,获得10
11秒前
完美世界应助瘦瘦的背包采纳,获得10
11秒前
小木棉完成签到,获得积分10
11秒前
威武诺言发布了新的文献求助10
11秒前
11秒前
11秒前
wdn0411完成签到,获得积分10
11秒前
zenoalter完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762