Inspection of visible components in urine based on deep learning

初始化 计算机科学 人工智能 瓶颈 棱锥(几何) 模式识别(心理学) 特征(语言学) 预处理器 特征提取 图像处理 主成分分析 像素 计算机视觉 图像(数学) 光学 物理 哲学 嵌入式系统 程序设计语言 语言学
作者
Qiaoliang Li,Zhigang Yu,Qi Tao,Lei Zheng,Suwen Qi,Zhuoying He,Shiyu Li,Huimin Guan
出处
期刊:Medical Physics [Wiley]
卷期号:47 (7): 2937-2949 被引量:12
标识
DOI:10.1002/mp.14118
摘要

Purpose Urinary particles are particularly important parameters in clinical urinalysis, especially for the diagnosis of nephropathy. Therefore, it is highly important to precisely detect urinary particles in the clinical setting. However, artificial microscopy is subjective and time consuming, and various previous detection algorithms lack the adequate accuracy. In this study, a method is proposed for the analysis of urinary particles based on deep learning. Methods We used seven cellular components (i.e., erythrocytes, leukocytes, epithelial, low‐transitional epithelium, casts, crystal, and squamous epithelial cells) in the microscopic imaging of urine as the detection targets. After the extraction of features using Resnet50, feature maps of different sizes are obtained in the last few layers of the feature pyramid net (FPN). The feature maps are then input into the classification subnetwork and regression subnetwork for classification and localization respectively, and detection results are obtained. First, we introduce the basic model (RetinaNet) to detect the cellular components in urinary particles, and the features of the objects can then be extracted more effectively by replacing different basic networks. Lastly, the effects of different weight initialization methods and different anchor scales on the performance of the model are investigated. Results We obtained the optimal network structure based on the adjustment of the loss functional parameters, thereby achieving the best results in the test set of urinary particles. The experimental data yielded an accuracy of 88.65% with a processing time of only 0.2 s for each image on a GeForce GTX 1080 graphics processing unit (GPU). Our results demonstrate that this method cannot only achieve the speed of the first‐stage target detector, but also the accuracy of the two‐stage target algorithm in the analysis of urinary particles. Conclusion This study developed new automated analysis urinary particles based on deep learning, and this method is expected to be used for the automated analysis and detection of urinary particles. Moreover, our approach will be useful for the detection of other cells in the clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
肱二头肌完成签到,获得积分10
2秒前
wang完成签到,获得积分0
2秒前
du发布了新的文献求助10
2秒前
2秒前
努力熊熊完成签到,获得积分10
2秒前
研友_5ZlN6L发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
secret完成签到,获得积分10
3秒前
Lin发布了新的文献求助10
4秒前
可爱的函函应助bingsu108采纳,获得10
4秒前
可可完成签到,获得积分10
4秒前
drdouxia发布了新的文献求助10
4秒前
汉堡包应助TT采纳,获得10
5秒前
5秒前
大力水香发布了新的文献求助10
6秒前
克偃统统发布了新的文献求助50
6秒前
6秒前
jiajia发布了新的文献求助10
7秒前
耳机单蹦完成签到,获得积分10
7秒前
暴躁的帽子完成签到,获得积分10
7秒前
JasperChan完成签到,获得积分10
7秒前
慕青应助secret采纳,获得10
8秒前
文竹薄荷完成签到 ,获得积分10
8秒前
9秒前
JasperChan发布了新的文献求助30
9秒前
10秒前
qsxy发布了新的文献求助10
10秒前
10秒前
略略略完成签到,获得积分10
10秒前
风吹发布了新的文献求助10
10秒前
11秒前
在水一方应助Ann采纳,获得10
11秒前
11秒前
鹊起惊梦完成签到,获得积分10
12秒前
琛瑜完成签到 ,获得积分10
13秒前
bkagyin应助drdouxia采纳,获得10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960556
求助须知:如何正确求助?哪些是违规求助? 3506870
关于积分的说明 11132558
捐赠科研通 3239151
什么是DOI,文献DOI怎么找? 1790050
邀请新用户注册赠送积分活动 872129
科研通“疑难数据库(出版商)”最低求助积分说明 803128