已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Inspection of visible components in urine based on deep learning

初始化 计算机科学 人工智能 瓶颈 棱锥(几何) 模式识别(心理学) 特征(语言学) 预处理器 特征提取 图像处理 主成分分析 像素 计算机视觉 图像(数学) 光学 物理 哲学 嵌入式系统 程序设计语言 语言学
作者
Qiaoliang Li,Zhigang Yu,Qi Tao,Lei Zheng,Suwen Qi,Zhuoying He,Shiyu Li,Huimin Guan
出处
期刊:Medical Physics [Wiley]
卷期号:47 (7): 2937-2949 被引量:12
标识
DOI:10.1002/mp.14118
摘要

Purpose Urinary particles are particularly important parameters in clinical urinalysis, especially for the diagnosis of nephropathy. Therefore, it is highly important to precisely detect urinary particles in the clinical setting. However, artificial microscopy is subjective and time consuming, and various previous detection algorithms lack the adequate accuracy. In this study, a method is proposed for the analysis of urinary particles based on deep learning. Methods We used seven cellular components (i.e., erythrocytes, leukocytes, epithelial, low‐transitional epithelium, casts, crystal, and squamous epithelial cells) in the microscopic imaging of urine as the detection targets. After the extraction of features using Resnet50, feature maps of different sizes are obtained in the last few layers of the feature pyramid net (FPN). The feature maps are then input into the classification subnetwork and regression subnetwork for classification and localization respectively, and detection results are obtained. First, we introduce the basic model (RetinaNet) to detect the cellular components in urinary particles, and the features of the objects can then be extracted more effectively by replacing different basic networks. Lastly, the effects of different weight initialization methods and different anchor scales on the performance of the model are investigated. Results We obtained the optimal network structure based on the adjustment of the loss functional parameters, thereby achieving the best results in the test set of urinary particles. The experimental data yielded an accuracy of 88.65% with a processing time of only 0.2 s for each image on a GeForce GTX 1080 graphics processing unit (GPU). Our results demonstrate that this method cannot only achieve the speed of the first‐stage target detector, but also the accuracy of the two‐stage target algorithm in the analysis of urinary particles. Conclusion This study developed new automated analysis urinary particles based on deep learning, and this method is expected to be used for the automated analysis and detection of urinary particles. Moreover, our approach will be useful for the detection of other cells in the clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YU发布了新的文献求助10
1秒前
2秒前
wuyongmei完成签到 ,获得积分20
2秒前
李李原上草完成签到 ,获得积分10
6秒前
Paddi完成签到,获得积分10
11秒前
甘sir完成签到 ,获得积分10
20秒前
卧镁铀钳完成签到 ,获得积分10
22秒前
25秒前
26秒前
cheese发布了新的文献求助10
32秒前
xtt完成签到,获得积分20
33秒前
吾皇完成签到 ,获得积分10
33秒前
傲娇的笑白完成签到 ,获得积分10
33秒前
34秒前
cc完成签到,获得积分10
34秒前
WEIWEI发布了新的文献求助50
34秒前
ding应助科研通管家采纳,获得10
35秒前
烟花应助科研通管家采纳,获得10
35秒前
研友_VZG7GZ应助科研通管家采纳,获得10
35秒前
阿巴阿巴发布了新的文献求助10
37秒前
mlzmlz完成签到,获得积分10
39秒前
xtt发布了新的文献求助10
39秒前
39秒前
Singularity应助cheese采纳,获得10
40秒前
zzzz完成签到,获得积分10
41秒前
Sherwin完成签到,获得积分10
41秒前
宋泽艺完成签到 ,获得积分10
45秒前
45秒前
王某人完成签到 ,获得积分10
45秒前
abiorz完成签到,获得积分10
45秒前
窗外是蔚蓝色完成签到,获得积分10
46秒前
温颂完成签到,获得积分10
48秒前
阿巴阿巴完成签到,获得积分10
51秒前
52秒前
52秒前
ranj完成签到,获得积分10
55秒前
57秒前
小脚丫完成签到 ,获得积分10
58秒前
纯洁完成签到,获得积分10
1分钟前
Sunye发布了新的文献求助10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311000
求助须知:如何正确求助?哪些是违规求助? 2943859
关于积分的说明 8516564
捐赠科研通 2619145
什么是DOI,文献DOI怎么找? 1432095
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802