Inspection of visible components in urine based on deep learning

初始化 计算机科学 人工智能 瓶颈 棱锥(几何) 模式识别(心理学) 特征(语言学) 预处理器 特征提取 图像处理 主成分分析 像素 计算机视觉 图像(数学) 光学 物理 哲学 嵌入式系统 程序设计语言 语言学
作者
Qiaoliang Li,Zhigang Yu,Qi Tao,Lei Zheng,Suwen Qi,Zhuoying He,Shiyu Li,Huimin Guan
出处
期刊:Medical Physics [Wiley]
卷期号:47 (7): 2937-2949 被引量:12
标识
DOI:10.1002/mp.14118
摘要

Purpose Urinary particles are particularly important parameters in clinical urinalysis, especially for the diagnosis of nephropathy. Therefore, it is highly important to precisely detect urinary particles in the clinical setting. However, artificial microscopy is subjective and time consuming, and various previous detection algorithms lack the adequate accuracy. In this study, a method is proposed for the analysis of urinary particles based on deep learning. Methods We used seven cellular components (i.e., erythrocytes, leukocytes, epithelial, low‐transitional epithelium, casts, crystal, and squamous epithelial cells) in the microscopic imaging of urine as the detection targets. After the extraction of features using Resnet50, feature maps of different sizes are obtained in the last few layers of the feature pyramid net (FPN). The feature maps are then input into the classification subnetwork and regression subnetwork for classification and localization respectively, and detection results are obtained. First, we introduce the basic model (RetinaNet) to detect the cellular components in urinary particles, and the features of the objects can then be extracted more effectively by replacing different basic networks. Lastly, the effects of different weight initialization methods and different anchor scales on the performance of the model are investigated. Results We obtained the optimal network structure based on the adjustment of the loss functional parameters, thereby achieving the best results in the test set of urinary particles. The experimental data yielded an accuracy of 88.65% with a processing time of only 0.2 s for each image on a GeForce GTX 1080 graphics processing unit (GPU). Our results demonstrate that this method cannot only achieve the speed of the first‐stage target detector, but also the accuracy of the two‐stage target algorithm in the analysis of urinary particles. Conclusion This study developed new automated analysis urinary particles based on deep learning, and this method is expected to be used for the automated analysis and detection of urinary particles. Moreover, our approach will be useful for the detection of other cells in the clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wss完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
汉堡包应助Cai采纳,获得10
刚刚
酷炫抽屉完成签到 ,获得积分10
刚刚
zeno123456完成签到,获得积分10
1秒前
bx发布了新的文献求助10
1秒前
zxl完成签到,获得积分20
1秒前
hailang820316完成签到,获得积分10
1秒前
3秒前
zxl发布了新的文献求助20
4秒前
追求发布了新的文献求助30
4秒前
南暮应助梁书铭采纳,获得10
5秒前
萌兰完成签到,获得积分10
5秒前
大西瓜发布了新的文献求助10
5秒前
米贝明z发布了新的文献求助10
6秒前
hug完成签到,获得积分10
7秒前
wangli发布了新的文献求助10
7秒前
8秒前
彭于晏应助同尘采纳,获得10
8秒前
英俊的铭应助夺命猪头采纳,获得150
9秒前
www发布了新的文献求助10
9秒前
单身的凡雁完成签到 ,获得积分20
9秒前
9秒前
10秒前
和谐的蜡烛完成签到,获得积分10
10秒前
NPG应助善良黑夜采纳,获得10
12秒前
12秒前
pyt发布了新的文献求助10
13秒前
高兴凌波发布了新的文献求助10
13秒前
李傲发布了新的文献求助10
15秒前
15秒前
希望天下0贩的0应助zxl采纳,获得20
16秒前
monere完成签到,获得积分0
16秒前
星辰大海应助迷路的睫毛采纳,获得10
17秒前
18秒前
19秒前
SongNan_Ding发布了新的文献求助10
19秒前
李傲完成签到,获得积分10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775376
求助须知:如何正确求助?哪些是违规求助? 3321021
关于积分的说明 10203165
捐赠科研通 3035891
什么是DOI,文献DOI怎么找? 1665880
邀请新用户注册赠送积分活动 797104
科研通“疑难数据库(出版商)”最低求助积分说明 757740