亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram

列线图 肺癌 医学 无线电技术 逻辑回归 队列 放射科 回顾性队列研究 Lasso(编程语言) 接收机工作特性 肿瘤科 内科学 计算机科学 万维网
作者
Ailing Liu,Zhiheng Wang,Yachao Yang,Jingtao Wang,Xiaoyu Dai,Lijie Wang,Yuan Lu,Fuzhong Xue
出处
期刊:Cancer communications [Wiley]
卷期号:40 (1): 16-24 被引量:71
标识
DOI:10.1002/cac2.12002
摘要

Abstract Background Lung cancer is the most commonly diagnosed cancer worldwide. Its survival rate can be significantly improved by early screening. Biomarkers based on radiomics features have been found to provide important physiological information on tumors and considered as having the potential to be used in the early screening of lung cancer. In this study, we aim to establish a radiomics model and develop a tool to improve the discrimination between benign and malignant pulmonary nodules. Methods A retrospective study was conducted on 875 patients with benign or malignant pulmonary nodules who underwent computed tomography (CT) examinations between June 2013 and June 2018. We assigned 612 patients to a training cohort and 263 patients to a validation cohort. Radiomics features were extracted from the CT images of each patient. Least absolute shrinkage and selection operator (LASSO) was used for radiomics feature selection and radiomics score calculation. Multivariate logistic regression analysis was used to develop a classification model and radiomics nomogram. Radiomics score and clinical variables were used to distinguish benign and malignant pulmonary nodules in logistic model. The performance of the radiomics nomogram was evaluated by the area under the curve (AUC), calibration curve and Hosmer‐Lemeshow test in both the training and validation cohorts. Results A radiomics score was built and consisted of 20 features selected by LASSO from 1288 radiomics features in the training cohort. The multivariate logistic model and radiomics nomogram were constructed using the radiomics score and patients’ age. Good discrimination of benign and malignant pulmonary nodules was obtained from the training cohort (AUC, 0.836; 95% confidence interval [CI]: 0.793‐0.879) and validation cohort (AUC, 0.809; 95% CI: 0.745‐0.872). The Hosmer‐Lemeshow test also showed good performance for the logistic regression model in the training cohort ( P = 0.765) and validation cohort ( P = 0.064). Good alignment with the calibration curve indicated the good performance of the nomogram. Conclusions The established radiomics nomogram is a noninvasive preoperative prediction tool for malignant pulmonary nodule diagnosis. Validation revealed that this nomogram exhibited excellent discrimination and calibration capacities, suggesting its clinical utility in the early screening of lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲士萧发布了新的文献求助10
刚刚
行走完成签到,获得积分10
8秒前
冷傲士萧完成签到,获得积分10
21秒前
23秒前
虾滑完成签到,获得积分10
27秒前
33秒前
sutharsons应助ceeray23采纳,获得111
42秒前
zhxi给zhxi的求助进行了留言
1分钟前
1分钟前
阿泽完成签到,获得积分10
1分钟前
哈哈嘻嘻完成签到,获得积分10
1分钟前
ChenW.完成签到,获得积分10
1分钟前
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
mumu完成签到 ,获得积分10
1分钟前
小二郎应助dzll采纳,获得10
1分钟前
稳重的寒梦完成签到,获得积分20
1分钟前
Jasper应助快乐的慕青采纳,获得10
1分钟前
1分钟前
慕青应助哈哈哈采纳,获得10
1分钟前
dzll发布了新的文献求助10
1分钟前
2分钟前
江上烟发布了新的文献求助10
2分钟前
彦子完成签到 ,获得积分10
2分钟前
2分钟前
情怀应助江上烟采纳,获得30
2分钟前
ring发布了新的文献求助10
2分钟前
ring完成签到,获得积分20
2分钟前
2分钟前
2分钟前
栗子应助勤劳怜寒采纳,获得10
2分钟前
柔弱紊发布了新的文献求助10
2分钟前
小蘑菇应助rain采纳,获得10
2分钟前
2分钟前
阳光的访烟完成签到,获得积分20
2分钟前
3分钟前
dax大雄完成签到 ,获得积分10
3分钟前
3分钟前
勤劳怜寒完成签到,获得积分10
3分钟前
cheng完成签到,获得积分10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516334
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9240082
捐赠科研通 2793695
什么是DOI,文献DOI怎么找? 1533176
邀请新用户注册赠送积分活动 712599
科研通“疑难数据库(出版商)”最低求助积分说明 707384