作者
Wenya Li,Zhenzhu Jing,Yingying Cheng,Xiangnan Wang,Donghua Li,Ruili Han,Wenting Li,Guoxi Li,Guirong Sun,Yadong Tian,Xiaojun Liu,Xin Kang,Zhuanjian Li
摘要
Abstract An increasing number of studies have shown that quantitative trait loci (QTLs) at the end of chromosome 1 identified in different chicken breeds and populations exert significant effects on growth traits in chickens. Nevertheless, the causal genes underlying the QTL effect remain poorly understood. Using an updated gene database, a novel lncRNA (named LncFAM) was found at the end of chromosome 1 and located in a growth and digestion QTL. This study showed that the expression level of LncFAM in pancreas tissues with a high weight was significantly higher than that in pancreas tissues with a low weight, which indicates that the expression level of LncFAM was positively correlated with various growth phenotype indexes, such as growth speed and body weight. A polymorphism screening identified four polymorphisms with strong linkage disequilibrium in LncFAM: a 5-bp indel in the second exon, an A/G base mutation, and 7-bp and 97-bp indels in the second intron. A study of a 97-bp insertion in the second intron using an F2 chicken resource population produced by Anka and Gushi chickens showed that the mutant individuals with genotype II had the highest values for body weight (BW) at 0 days and 2, 4, 6, 8, 10 and 12 weeks, shank girth (SG) at 4, 8 and 12 weeks, chest width (CW) at 4, 8 and 12 weeks, body slant length (BSL) at 8 and 12 weeks, and pelvic width (PW) at 4, 8 and 12 weeks, followed by ID and DD genotypes. The amplification and typing of 2,716 chickens from ten different breeds, namely, the F2 chicken resource population, dual-type chickens, including Xichuan black-bone chickens, Lushi green-shell layers, Dongxiang green-shell layers, Changshun green-shell layers, and Gushi chickens, and commercial broilers, including Ross 308, AA, Cobb and Hubbard broilers, revealed that II was the dominant genotype. Interestingly, only genotype II existed among the tested populations of commercial broilers. Moreover, the expression level in the pancreas tissue of Ross 308 chickens was significantly higher than that in the pancreas tissue of Gushi chickens (P < 0.001), which might be related to the conversion rates among different chickens. The prediction and verification of the target gene of LncFAM showed that LncFAM might regulate the expression of its target gene FAM48A through cis-expression. Our results provide useful information on the mutation of LncFAM, which can be used as a potential molecular breeding marker.