CRISPRidentify: identification of CRISPR arrays using machine learning approach

清脆的 反式激活crRNA 生物 计算生物学 鉴定(生物学) 计算机科学 遗传学 Cas9 基因 植物
作者
Alexander Mitrofanov,Omer S. Alkhnbashi,Sergey Shmakov,Kira S. Makarova,Eugene V. Koonin,Rolf Backofen
出处
期刊:Nucleic Acids Research [Oxford University Press]
卷期号:49 (4): e20-e20 被引量:41
标识
DOI:10.1093/nar/gkaa1158
摘要

Abstract CRISPR–Cas are adaptive immune systems that degrade foreign genetic elements in archaea and bacteria. In carrying out their immune functions, CRISPR–Cas systems heavily rely on RNA components. These CRISPR (cr) RNAs are repeat-spacer units that are produced by processing of pre-crRNA, the transcript of CRISPR arrays, and guide Cas protein(s) to the cognate invading nucleic acids, enabling their destruction. Several bioinformatics tools have been developed to detect CRISPR arrays based solely on DNA sequences, but all these tools employ the same strategy of looking for repetitive patterns, which might correspond to CRISPR array repeats. The identified patterns are evaluated using a fixed, built-in scoring function, and arrays exceeding a cut-off value are reported. Here, we instead introduce a data-driven approach that uses machine learning to detect and differentiate true CRISPR arrays from false ones based on several features. Our CRISPR detection tool, CRISPRidentify, performs three steps: detection, feature extraction and classification based on manually curated sets of positive and negative examples of CRISPR arrays. The identified CRISPR arrays are then reported to the user accompanied by detailed annotation. We demonstrate that our approach identifies not only previously detected CRISPR arrays, but also CRISPR array candidates not detected by other tools. Compared to other methods, our tool has a drastically reduced false positive rate. In contrast to the existing tools, our approach not only provides the user with the basic statistics on the identified CRISPR arrays but also produces a certainty score as a practical measure of the likelihood that a given genomic region is a CRISPR array.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lianlian完成签到,获得积分10
刚刚
田様应助cuicui采纳,获得10
2秒前
Soybean完成签到 ,获得积分10
2秒前
FashionBoy应助大大小小采纳,获得10
2秒前
2秒前
仇行恶完成签到,获得积分20
2秒前
4秒前
靜心发布了新的文献求助10
4秒前
大先生完成签到,获得积分10
5秒前
米某某完成签到,获得积分10
6秒前
萧水白发布了新的文献求助100
6秒前
7秒前
7秒前
Mor完成签到,获得积分20
7秒前
8秒前
8秒前
8秒前
仇行恶发布了新的文献求助10
8秒前
9秒前
9秒前
emo发布了新的文献求助30
9秒前
张朵拉关注了科研通微信公众号
9秒前
10秒前
11秒前
12秒前
雪岭上的狗熊完成签到,获得积分10
13秒前
orixero应助静俏采纳,获得10
14秒前
14秒前
14秒前
芝麻芝麻开门完成签到,获得积分10
15秒前
Rebeccaiscute完成签到 ,获得积分10
15秒前
三石盟约完成签到,获得积分10
15秒前
研友_24789发布了新的文献求助300
15秒前
15秒前
16秒前
16秒前
懒懒大王完成签到,获得积分10
17秒前
刻苦沛芹发布了新的文献求助10
17秒前
chriselva完成签到,获得积分10
17秒前
Cc发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147820
求助须知:如何正确求助?哪些是违规求助? 2798873
关于积分的说明 7832037
捐赠科研通 2455841
什么是DOI,文献DOI怎么找? 1306979
科研通“疑难数据库(出版商)”最低求助积分说明 627957
版权声明 601587