Relation-Aware Neighborhood Matching Model for Entity Alignment

计算机科学 杠杆(统计) 匹配(统计) 关系(数据库) 情报检索 实体链接 知识图 人工智能 数据挖掘 理论计算机科学 知识库 数学 统计
作者
Yao Zhu,Hongzhi Liu,Zhonghai Wu,Yingpeng Du
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (5): 4749-4756 被引量:67
标识
DOI:10.1609/aaai.v35i5.16606
摘要

Entity alignment which aims at linking entities with the same meaning from different knowledge graphs (KGs) is a vital step for knowledge fusion. Existing research focused on learning embeddings of entities by utilizing structural information of KGs for entity alignment. These methods can aggregate information from neighboring nodes but may also bring noise from neighbors. Most recently, several researchers attempted to compare neighboring nodes in pairs to enhance the entity alignment. However, they ignored the relations between entities which are also important for neighborhood matching. In addition, existing methods paid less attention to the positive interactions between the entity alignment and the relation alignment. To deal with these issues, we propose a novel Relation-aware Neighborhood Matching model named RNM for entity alignment. Specifically, we propose to utilize the neighborhood matching to enhance the entity alignment. Besides comparing neighbor nodes when matching neighborhood, we also try to explore useful information from the connected relations. Moreover, an iterative framework is designed to leverage the positive interactions between the entity alignment and the relation alignment in a semi-supervised manner. Experimental results on three real-world datasets demonstrate that the proposed model RNM performs better than state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助CC采纳,获得10
刚刚
刚刚
单薄咖啡豆完成签到,获得积分10
刚刚
火星上的宫苴完成签到 ,获得积分10
刚刚
我叫预言家完成签到,获得积分10
1秒前
丁一完成签到,获得积分10
1秒前
1秒前
1秒前
火星上的沛春完成签到,获得积分10
2秒前
K3完成签到,获得积分10
2秒前
小呀嘛小二郎完成签到 ,获得积分10
2秒前
4秒前
yayaya完成签到,获得积分10
4秒前
集力申完成签到,获得积分10
4秒前
烂漫幻翠完成签到,获得积分10
5秒前
岁月间完成签到,获得积分10
5秒前
5秒前
Aks完成签到,获得积分10
5秒前
harmy发布了新的文献求助10
6秒前
qi完成签到,获得积分10
6秒前
7秒前
顾矜应助miaolingcool采纳,获得10
7秒前
大个应助干净的井采纳,获得10
8秒前
HJ关注了科研通微信公众号
8秒前
9秒前
tuanheqi应助萧水白采纳,获得100
9秒前
9秒前
风中醉蝶完成签到 ,获得积分10
10秒前
科研通AI2S应助zhongxianghua采纳,获得10
10秒前
香蕉觅云应助Laura567采纳,获得10
11秒前
12秒前
12秒前
12秒前
情怀应助freedom采纳,获得10
12秒前
13秒前
11111完成签到,获得积分10
13秒前
阿龙发布了新的文献求助10
13秒前
13秒前
我是老大应助11采纳,获得10
13秒前
13秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327263
求助须知:如何正确求助?哪些是违规求助? 2957568
关于积分的说明 8586317
捐赠科研通 2635685
什么是DOI,文献DOI怎么找? 1442556
科研通“疑难数据库(出版商)”最低求助积分说明 668298
邀请新用户注册赠送积分活动 655315