Medication Adherence Trajectories: A Systematic Literature Review

奇纳 医学 心理干预 药物依从性 梅德林 疾病 家庭医学 精神科 内科学 政治学 法学
作者
Mai Alhazami,Vasco M. Pontinha,Julie A. Patterson,David A. Holdford
出处
期刊:Journal of managed care & specialty pharmacy [Academy of Managed Care Pharmacy]
卷期号:26 (9): 1138-1152 被引量:37
标识
DOI:10.18553/jmcp.2020.26.9.1138
摘要

BACKGROUND: Traditional adherence measures such as proportion of days covered (PDC) and medication possession ratio (MPR) are limited in their ability to explain patient medication adherence over time. Group-based trajectory modeling (GBTM) is a new methodological approach that visually describes the dynamics of long-term medication adherence and classifies adherence behavior into groups. OBJECTIVES: To describe and compare trajectories of medication nonadherence reported in the medical literature, including identifying consistent trends in adherence trajectories and disease and patient characteristics that predict trajectory group membership. METHODS: A systematic literature review was conducted in April 2020 in PubMed and CINAHL using MeSH terms and key words in appropriate combinations. Citations were screened for relevance using predefined inclusion and exclusion criteria and evaluated according to variables associated with group-based trajectory models. RESULTS: 21 articles met the study criteria and were reviewed. Generally, studies identified 4 to 6 trajectory groups that described longitudinal medication adherence behavior. Most commonly identified trajectories were labeled as (a) consistent, high adherence, (b) declining adherence, (c) early and consistent nonadherence, and (d) initial nonadherence followed by an increase. Several predictors, including socioeconomic status, disease characteristics, and therapy initiation were routinely associated with group membership. CONCLUSIONS: This review suggests that adherence trajectories and predictors of specific group membership may be similar across diverse disease states. GBTM describes longitudinal, dynamic patterns of medication adherence that may facilitate the development of targeted interventions to promote adherence. Implications for value-based payment systems are discussed in this review. DISCLOSURES: No outside funding supported this study. The authors have no conflicts of interest to declare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亮亮发布了新的文献求助50
刚刚
LZQ应助细心的小蜜蜂采纳,获得30
1秒前
艺玲发布了新的文献求助10
1秒前
小二郎应助Seven采纳,获得10
1秒前
设计狂魔完成签到,获得积分10
1秒前
1秒前
2秒前
韭黄发布了新的文献求助10
2秒前
科研小白完成签到,获得积分10
2秒前
3秒前
9℃发布了新的文献求助10
3秒前
甩看文献完成签到,获得积分10
3秒前
3秒前
欣喜书桃关注了科研通微信公众号
4秒前
4秒前
真实的熊猫完成签到,获得积分10
4秒前
小张不慌完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
十三完成签到,获得积分10
6秒前
juan发布了新的文献求助10
6秒前
丘比特应助白小白采纳,获得10
6秒前
6秒前
晓军发布了新的文献求助20
6秒前
7秒前
zxl完成签到,获得积分10
8秒前
专心搞学术完成签到,获得积分10
8秒前
FFF发布了新的文献求助10
8秒前
李小胖发布了新的文献求助20
8秒前
李健应助故意的绿竹采纳,获得10
8秒前
勤恳的断秋完成签到 ,获得积分10
9秒前
VDC发布了新的文献求助10
9秒前
9秒前
jasmine970000发布了新的文献求助100
9秒前
酷波er应助camellia采纳,获得10
10秒前
Zoe发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762