Estimating the accuracy of the MARTINI model towards the investigation of peripheral protein–membrane interactions

膜蛋白 外周膜蛋白 假阳性悖论 分子动力学 化学 先验与后验 生物物理学 脂质双层 计算生物学 生物系统 生物 生物化学 计算机科学 整体膜蛋白 机器学习 计算化学 认识论 哲学
作者
Sriraksha Srinivasan,Valeria Zoni,Stefano Vanni
出处
期刊:Faraday Discussions [Royal Society of Chemistry]
卷期号:232: 131-148 被引量:38
标识
DOI:10.1039/d0fd00058b
摘要

Peripheral membrane proteins play a major role in numerous biological processes by transiently associating with cellular membranes, often with extreme membrane specificity. Because of the short-lived nature of these interactions, molecular dynamics (MD) simulations have emerged as an appealing tool to characterize at the structural level the molecular details of the protein-membrane interface. Transferable coarse-grained (CG) MD simulations, in particular, offer the possibility to investigate the spontaneous association of peripheral proteins with lipid bilayers of different compositions at limited computational cost, but they are hampered by the lack of a reliable a priori estimation of their accuracy and thus typically require a posteriori experimental validation. In this article, we investigate the ability of the MARTINI CG force field, specifically the 3 open-beta version, to reproduce known experimental observations regarding the membrane binding behavior of 12 peripheral membrane proteins and peptides. Based on observations of multiple binding and unbinding events in several independent replicas, we found that, despite the presence of false positives and false negatives, this model is mostly able to correctly characterize the membrane binding behavior of peripheral proteins, and to identify key residues found to disrupt membrane binding in mutagenesis experiments. While preliminary, our investigations suggest that transferable chemical-specific CG force fields have enormous potential in the characterization of the membrane binding process by peripheral proteins, and that the identification of negative results could help drive future force field development efforts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清溪浅水XZ完成签到,获得积分10
1秒前
2秒前
3秒前
phil完成签到,获得积分10
4秒前
hhhh关注了科研通微信公众号
4秒前
传奇3应助Motorhead采纳,获得30
5秒前
研友_nqa7On发布了新的文献求助10
6秒前
8秒前
儒雅音响关注了科研通微信公众号
8秒前
细心的日记本完成签到,获得积分10
9秒前
FashionBoy应助司徒不二采纳,获得10
9秒前
11秒前
12秒前
12秒前
chelsea发布了新的文献求助10
14秒前
alexlpb发布了新的文献求助10
15秒前
16秒前
16秒前
匿天发布了新的文献求助30
17秒前
哦吼发布了新的文献求助10
17秒前
17秒前
red发布了新的文献求助10
19秒前
我是老大应助zou采纳,获得10
19秒前
香蕉觅云应助chelsea采纳,获得10
20秒前
我是老大应助苏灿采纳,获得10
21秒前
21秒前
QR发布了新的文献求助10
22秒前
吃土少年应助一二采纳,获得10
22秒前
23秒前
23秒前
111发布了新的文献求助10
25秒前
哦吼完成签到,获得积分20
25秒前
26秒前
26秒前
27秒前
everglow完成签到,获得积分10
27秒前
28秒前
司马千筹发布了新的文献求助10
28秒前
hhhh发布了新的文献求助50
28秒前
kentomomota发布了新的文献求助10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756673
求助须知:如何正确求助?哪些是违规求助? 3300088
关于积分的说明 10112156
捐赠科研通 3014490
什么是DOI,文献DOI怎么找? 1655582
邀请新用户注册赠送积分活动 790016
科研通“疑难数据库(出版商)”最低求助积分说明 753546